Classroom Resources: Molecules & Bonding
Filter by:
101 – 125 of 207 Classroom Resources
-
Introduction, Interdisciplinary, History, Heat, Renewable Energy, Polymers, Molecular Structure | Middle School, High School
Activity: The Frontiers of Chemistry: Video Questions Mark as Favorite (17 Favorites)
In this activity, students will answer questions while watching a video about several exciting scientific developments, including solar cells, 3D printing and micro machines. This video will help students understand that fundamental chemistry concepts are essential to the advancement of science and technology.
-
Ionic Bonding, Covalent Bonding, Molecular Structure, Molecular Formula, Molecular Geometry, Naming Compounds, Polarity, Electronegativity, Intermolecular Forces, VSEPR Theory, Resonance, Metallic Bonding | High School
Lesson Plan: Chemical Bonding Unit Plan Mark as Favorite (49 Favorites)
The AACT high school classroom resource library has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach Chemical Bonding to your students.
-
Percent Composition, Mole Concept, Identifying an Unknown, Emission Spectrum, Empirical Formula, Percent Composition | High School
Lesson Plan: Chemical Analysis of Martian Rocks Mark as Favorite (103 Favorites)
In this lesson, students are challenged to analyze the spectral graphs obtained by the Curiosity Mars Rover. Based on their examination students will determine the component elements of each sample, as well as the relative abundance of each element. With this information the student will complete calculations to find the empirical formula and identify the composition of the unknown rock. Finally students will complete research to see if these rocks are actually like those on Earth.
-
Mole Concept, Dimensional Analysis, Molar Mass, Molecular Formula | High School
Activity: Calculating Moles in Daily Life Mark as Favorite (140 Favorites)
In this activity, students will use dimensional analysis to complete calculations and conversions for the number of moles, atoms, and molecules in several everyday household items using collected data.
-
Intermolecular Forces, Polarity, Molecular Geometry, Molecular Structure, Molecular Structure , Physical Properties, Chemical Properties, Physical Change | High School
Lesson Plan: An Exploration of Intermolecular Forces Mark as Favorite (50 Favorites)
In this lesson students will explore intermolecular forces, and their associated effect on physical and chemical properties. Students will experiment with volatile liquids to investigate their predictions about intermolecular strength.
-
Culminating Project, Chemical Properties, Physical Properties, History, VSEPR Theory, Polymers, Covalent Bonding | High School
Project: The Evolution of Materials Science in Everyday Products Mark as Favorite (67 Favorites)
In this project, students will be able to understand the progression of development of an everyday product and display their knowledge through a creative video. They will investigate the history and chemical composition of the product through the present day. The students will then suggest an innovation about how the product can be altered in the future to improve society.
-
Molecular Structure, Molecular Geometry, Bond Energy | High School
Activity: Find the Best Bond Angle and Bond Length of Water Mark as Favorite (6 Favorites)
In this activity, students participate in an introductory level computational chemistry investigation. Students will interact with computational software to conduct this activity and will analyze data to determine the best bond angle and bond length of a water molecule.
-
Percent Composition, Law of Definite Proportions | High School
Lab: Formula of an Unknown Hydrate Mark as Favorite (35 Favorites)
In this lab, students will design a laboratory procedure in order to ultimately determine the formula of an unknown hydrated salt. Students must recognize what data points are necessary to collect during the process, as well as how to analyze the data appropriately.
-
Physical Properties, Physical Change, Observations, Polymers | Elementary School, Middle School
Lab: Paper or Plastic? Mark as Favorite (6 Favorites)
In this lab students will research and compare the physical properties of various types of plastic bags. The recorded data will be analyzed by students, and they will use the results to design a plastic bag to meet a given set of criteria.
-
Dimensional Analysis, Mole Concept, Measurements, Density, Identifying an Unknown, Molar Mass | High School
Lab: Chemistry Composition Challenge Mark as Favorite (112 Favorites)
In this inquiry based lab, students will design a method to solve three chemistry problems involving moles, molecules, and density.
-
Intermolecular Forces, Intermolecular Forces, Physical Change | High School
Demonstration: Intermolecular Forces & Physical Properties Mark as Favorite (63 Favorites)
In this demonstration, students observe and compare the properties of surface tension, beading, evaporation, and miscibility for water and acetone.
-
Molecular Structure, Molecular Geometry, Polymers, Electronegativity, Heat, Temperature, Electricity | Middle School, High School
Video: The Future of Paint Video Mark as Favorite (17 Favorites)
This video explores the fascinating and innovative scientific advancements of paint. Students will learn how the molecular components in paint are helping to evolve in the world around them. Futuristic paint is capable of replacing light switches, conducting electricity, and regulating temperature amongst other things!
-
Ionic Bonding, Naming Compounds, Polyatomic Ions | High School
Activity: Introduction to Naming and Formula Writing for Ionic Compounds Mark as Favorite (112 Favorites)
In this activity, students will be introduced to ionic compound formulas and names. They will group prepared cut-outs to note similarities and differences among different classes of ionic compounds (i.e. binary and ternary, including metals with varying charges). The goal is not to be equipped to write names and formulas for ionic compounds, but to recognize trends in naming.
-
Covalent Bonding, Lewis Structures, VSEPR Theory, Electronegativity, Polarity, Atomic Radius, Valence Electrons | High School
Project: Molecular Modeling Mark as Favorite (102 Favorites)
In this project, students will research a molecule selected from the teacher approved list, construct a three-dimensional model of the molecule, and present their research to the class in a 7-10 minute oral presentation.
-
Catalysts, Order of Reaction , Activation Energy, Lewis Structures, Resonance, Molecular Geometry, Activation Energy, Energy Diagrams | High School
Lesson Plan: The Downside to Catalysts - An Exploration of CFC's on the Ozone Layer Mark as Favorite (35 Favorites)
In this lesson students will make observations of a colorful homogenous catalyst and intermediate in a reaction demonstration that will spark their interests. They will then work in teams to analyze graphs and data sets in order to make a real-world connection to AP topics in kinetics such as catalysts, intermediates and reaction mechanisms by exploring how CFCs work to break down the ozone layer. Students will also investigate and discuss this environmental issue.
-
Intermolecular Forces, Molecular Geometry, Polarity | High School
Lesson Plan: The Great Race: A Study of van der Waals Forces Mark as Favorite (7 Favorites)
In this lesson students will investigate intermolecular attractive forces, van der Waals forces. They will construct models of specified molecules and use the models to identify the van der Waals forces that exist between molecules of each substance (London dispersion forces, dipole-dipole forces and hydrogen bonds). Then, using manometers, teams will perform a series of races to determine which substance has the stronger van der Waals forces.
-
Ionic Bonding, Polyatomic Ions, Naming Compounds, Molecular Formula | Middle School, High School
Lesson Plan: What's in a Name? What's in a Glaze? Mark as Favorite (16 Favorites)
In this lesson students will learn about some of the chemical compounds involved in the art of pottery by practicing naming and writing formulas for ionic compounds commonly found in components of glazes for ceramics.
-
Electromagnetic Spectrum, Redox Reaction, Molecular Structure, Law of Conservation of Energy, Half Reactions, Oxidation Number, Oxidation, Reduction, Intermolecular Forces | High School
Lesson Plan: Fading Away Mark as Favorite (15 Favorites)
In this lesson students will explore photodegradation of color. First, students will view how fading of paint has affected Van Gogh’s great works of art and the efforts that are being taken to conserve these works. While exploring, students will actively engage in research to relate the fading process to redox reactions, X-Ray diffraction, solute-solvent interactions, and light/energy calculations. Students will then act as an Engineering Task Force and brainstorm to identify how photodegradation affects modern day objects and plan how to address their fading in an effort to market to the airliner Jetstar
-
VSEPR Theory, Molecular Structure, Molecular Geometry | High School
Activity: VSEPR Modeling Mark as Favorite (70 Favorites)
In this activity, students construct physical models of molecular shapes. However, students are not told what the preferred arrangements of electron pair domains are. Instead, they derive the arrangements. Students are given the opportunity to conceptualize what is happening when one electron pair domain acts upon another, and to understand how those interactions result in the molecular geometries predicted by VSEPR theory.
-
Mixtures, Molecular Structure, Separating Mixtures, Solute & Solvent | High School
Lesson Plan: What Type of Mixture is Paint? Mark as Favorite (17 Favorites)
In this lesson students will use simple laboratory tests to characterize differences between solutions, colloids, and suspensions. They will then apply those tests to paints to classify them as specific types of mixtures.
-
Polymers, Physical Properties, Chemical Properties, Physical Change, Chemical Change, Observations, Scientific Method, Mixtures | Middle School
Lesson Plan: Exploring the Chemistry of Oil and Acrylic Paints Mark as Favorite (13 Favorites)
In this lesson students learn about the chemistry of oil and acrylic paints. They make their own paint, and complete an experiment to collect qualitative and quantitative data through a series of tests. Students will also apply the concepts of physical and chemical change to the results of this controlled experiment.
-
Electromagnetic Spectrum, Molecular Structure, Mixtures | Middle School, High School
Video: What are Pigments? Video Mark as Favorite (14 Favorites)
This video discusses the chemistry of pigment molecules and how they are used to give paints their specific color. Students will learn about the importance of a pigment’s molecular structure, how they are physically suspended to create a paint color, as well as how they interact with light.
-
Mixtures, Solute & Solvent, Intermolecular Forces, Intermolecular Forces, Molecular Formula, Molecular Structure, Polymers, Electromagnetic Spectrum | Middle School, High School
Video: What is Paint? Video Mark as Favorite (17 Favorites)
This video investigates the composition of paint, while analyzing the fundamental chemistry principles of its main components. Students will learn about the differences between three common paint types, water colors, oil-based and acrylic paint as well as the chemistry of each.
-
Periodic Table, Elements, History, Subatomic Particles, Atomic Mass, Ionic Bonding, Covalent Bonding | Middle School, High School
Project: Exploring Elements Mark as Favorite (41 Favorites)
In this project, students will select an element and then use Ptable.com to explore aspects of the element including its periodicity, electron configuration, history, and uses in industry.
-
Periodic Table, Electronegativity, VSEPR Theory, Polarity, Molecular Structure | High School
Activity: Making Connections between Electronegativity, Molecular Shape, and Polarity Mark as Favorite (70 Favorites)
In this activity, students will find the electronegativity values of a variety of elements, draw the Lewis structures of select molecules that are made with those elements, and identify the molecular shape of each molecule. Students will then be asked to determine if the molecules are polar or nonpolar based on the electronegativity values of the atoms and the molecular shape. Students will use Ptable.com to find information about atoms and molecules and connect what they find to observable properties.