Classroom Resources: Atomic Structure


Filter by:

  1. Sort by:


26 – 49 of 49 Classroom Resources

  • Electron Configuration, Precipitate, Balancing Equations, Electrons, Valence Electrons, Solubility Rules, Classification of Reactions | High School

    Access is an AACT member benefit. Lesson Plan: Transition Metals Color the World Mark as Favorite (68 Favorites)

    In this lesson students will complete a series of double replacement reactions to form precipitates. The precipitates will be used as a pigment to create paint.

  • Electromagnetic Spectrum, Emission Spectrum, Emission Spectrum, Electrons | Middle School, High School

    Access is an AACT member benefit. Lesson Plan: Let it Glow Mark as Favorite (35 Favorites)

    In this lesson students will investigate the fluorescence of a variety of everyday items as well as prepared samples under a black light. Students will examine the concepts of absorption and subsequent emission of photons, as well as wavelength, frequency, and energy of electromagnetic radiation. As extension activities, students will learn about phosphorescence and research real-life applications of photoluminescence.

  • Metallic Bonding, Electrons, Electricity, Electrostatic Forces | High School

    Access is an AACT member benefit. Demonstration: Metallic Bonding & Magnetics Mark as Favorite (26 Favorites)

    In this demonstration students will observe how electrons flow through a metal in an example of metallic bonding. Using tubes made of different metal materials as well as one made of plastic, in combination with a rare earth magnet (neodymium magnet) the teacher will demonstrate how electrons will flow freely through a metal and create a magnetic field.

  • Subatomic Particles, Model of the Atom, Atomic Mass, Electrons | Middle School, High School

    Access is an AACT member benefit. Project: Element Project Mark as Favorite (75 Favorites)

    In this project, students will become familiar with and have a workable understanding of atomic structure. The students will also create and construct a model of an atom.

  • Electron Configuration, Electrons, Valence Electrons, Periodic Table, Orbitals | High School

    Access is an AACT member benefit. Activity: Electron Configuration and the Periodic Table Mark as Favorite (108 Favorites)

    In this activity, students will learn how the periodic table can be used to predict the electron configuration of an atom and, thus, better predict the reactivity of an atom.

  • Atomic Theory, Electrons, Model of the Atom, Subatomic Particles, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Niels Bohr Video Mark as Favorite (61 Favorites)

    This video tells the story of Niels Bohr, a great scientist who redefined how we think about atoms and the electron. Bohr’s model of the atom helped to advance understanding of subatomic particles, and holds an important place in the history and development of the atomic theory.

  • Model of the Atom, Periodic Table, Subatomic Particles, Electrons, Valence Electrons, Ions | High School, Middle School

    Access is an AACT member benefit. Lab: Sweet Model of the Atom Mark as Favorite (58 Favorites)

    In this lesson, students will use different candies to represent electrons, protons, and neutrons to gain a better understanding of atoms, ions, and isotopes.

  • Periodic Table, Orbitals , Electrons, Electron Configuration, Atomic Radius, Ionic Bonding, Covalent Bonding | High School

    Access is an AACT member benefit. Activity: Planet P-10 Mark as Favorite (35 Favorites)

    In this activity, students will create a periodic table using the unusual orbital rules elements follow on an imaginary planet called P-10 and identify periodic trends.

  • Atomic Radius, Ionic Radius, Electrons, Model of the Atom, Subatomic Particles, Periodic Table | Elementary School, Middle School, High School

    Access is an AACT member benefit. Animation: Atomic & Ionic Radii Animation Mark as Favorite (61 Favorites)

    This animation explores patterns in atomic and ionic radii. Students will look at the different sizes of atoms in the third period and the atoms in the sixth group to see trends across periods and down groups. They will also look at an atom and its corresponding cation as well as an atom and its corresponding anion. **This video has no audio**

  • Model of the Atom, Electrons, Electron Configuration, Quantum Numbers, Subatomic Particles, Periodic Table | High School

    Access is an AACT member benefit. Animation: Orbitals Animation Mark as Favorite (133 Favorites)

    This animation explores the shapes of the 1s, 2s, 2p, 3s, 3p, 4s, and 3d orbitals and how they build up and overlap as each successive orbital is added. **This video has no audio**

  • Periodic Table, Elements, Introduction, History, Atoms, Electrons, Subatomic Particles | Middle School, Elementary School, High School

    Access is an AACT member benefit. Activity: Writing Your Name using Chemical Element Symbols Mark as Favorite (22 Favorites)

    In this activity, students will use their creativity to spell their name (first or middle name and their last name) using chemical symbols of elements on the periodic table. For example, you can spell Yvonne using the symbols for yttrium (Y), vanadium (V), oxygen (O), nitrogen (N), and neon (Ne).

  • Review, Subatomic Particles, Ions, Isotopes, Electrons, Atomic Mass, Lewis Dot Diagrams, Model of the Atom, Balancing Equations | High School, Middle School

    Access is an AACT member benefit. Activity: Tic-Tac-Toe Review Mark as Favorite (36 Favorites)

    In this activity students collaborate to complete tic-tac-toe review questions to prepare for a test on the atomic structure unit. The idea behind the activity is to give students choice and you can read more about the inspiration for the activity in the May issue of Chemistry Solutions.

  • Periodic Table, History, Physical Properties, Chemical Properties, Elements, Identifying an Unknown, Atoms, Atomic Radius, Ionic Radius, Ionization Energy, Electron Affinity, Valence Electrons, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Lesson Plan: The Periodic Table Unit Plan Mark as Favorite (65 Favorites)

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the Periodic Table to your students.

  • Quantum Numbers, Electron Configuration, Electrons, Orbitals | High School

    Access is an AACT member benefit. Lesson Plan: Quantum Numbers Mark as Favorite (29 Favorites)

    In this lesson plan, students complete a worksheet answering questions regarding quantum numbers.

  • Atomic Theory, Law of Conservation of Energy, Electrons, Electromagnetic Spectrum | High School

    Access is an AACT member benefit. Activity: Simulation Activity: Exciting Electrons Mark as Favorite (85 Favorites)

    In this simulation, students will explore what happens when electrons within a generic atom are excited from their ground state. This is a qualitative investigation, not meant to mimic any particular atom.

  • Periodic Table, History, Physical Properties, Chemical Properties, Atoms, Model of the Atom, Atomic Radius, Subatomic Particles, Electrons, Valence Electrons, Electron Configuration, Orbitals , Isotopes, Atomic Mass | High School, Middle School

    Activity: Ptable.com Investigations Mark as Favorite (138 Favorites)

    In this activity, students will use the online periodic table found at www.ptable.com to investigate a number of chemistry concepts. Students will use this online resource to explore information about the elements, including historical data, physical properties, periodic trends and more.

  • Electrostatic Forces, Subatomic Particles, Electrons, Electricity, Electrons, Graphing | High School

    Access is an AACT member benefit. Lab: Electromagnetic Forces in the Atom Mark as Favorite (2 Favorites)

    In this lab, students will better understand that opposite charges attract each other, and like charges repel.

  • Electron Affinity, Atomic Radius, Ionic Radius, Periodic Table, Ions, Atoms, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Access is an AACT member benefit. Activity: Periodic Trends II: Electron Affinity, Atomic Radius, & Ionic Radius Mark as Favorite (75 Favorites)

    In this simulation, students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Electrons, Subatomic Particles, Ions, Model of the Atom, Atoms | High School

    Access is an AACT member benefit. Activity: Periodic Trends I: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (157 Favorites)

    In this simulation, students will investigate several periodic trends, including atomic radius, ionization energy and ionic radius. Through the use of this simulation students will have the opportunity to examine atomic data as well as visually compare and interact with select elements from the periodic table.

  • Elements, Model of the Atom, Periodic Table, Introduction, Atoms, Electrons | Middle School, High School

    Access is an AACT member benefit. Activity: Periodic Puzzler Mark as Favorite (8 Favorites)

    In this activity, students will learn about what makes up an atom and how important protons are in the placement of elements on the periodic table.

  • Emission Spectrum, Emission Spectrum, Electromagnetic Spectrum, Subatomic Particles, Electrons, Atoms, Atomic Theory, Model of the Atom | High School

    Lesson Plan: Modeling Energy in Chemistry: Energy and the Electron Mark as Favorite (60 Favorites)

    This activity is designed for students to build a scientific argument about the relationship between energy and spectral lines by exploring how light interacts with atoms. In the process, students will examine proposed models of the hydrogen atom and use collected data to analyze the proposed models. They will then select one of the models and write a scientific argument to support their choice. Students will then review additional data to support and/or refute their selection. Based on their analysis, students will revise their selected model and construct a new argument to support their revisions.  

  • Electron Affinity, Atomic Radius, Ionic Radius, Ions, Atoms, Periodic Table, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Simulation: Periodic Trends II: Electron Affinity, Atomic Radius & Ionic Radius Mark as Favorite (27 Favorites)

    The May 2016 simulation is a follow-up to the March 2016 simulation. Students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Atoms, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Simulation: Periodic Trends: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (92 Favorites)

    In this simulation for the March 2016 issue, students can investigate the periodic trends of atomic radius, ionization energy, and ionic radius. By choosing elements from the periodic table, atoms can be selected for a side by side comparison and analysis. Students can also attempt to ionize an atom by removing its valence electrons. Quantitative data is available for each periodic trend, and can be further examined in a graph.

  • Atomic Theory, Law of Conservation of Energy, Electrons, Electromagnetic Spectrum | High School

    Simulation: Exciting Electrons Mark as Favorite (56 Favorites)

    In the March 2015 issue, students explore what happens when electrons within a generic atom are excited from their ground state. They will see that when an electron relaxes from an excited state to its ground state, energy is released in the form of electromagnetic radiation.

Filtered By

Subtopics: Electrons

Grade Level: High School

Clear All Filters

    Available Filters