Classroom Resources: Electrochemistry


Filter by:

  1. Sort by:


1 – 4 of 4 Classroom Resources

  • Electricity, Electrolytic Cells, Electrons, Anode, Cathode | High School

    Access is an AACT member benefit. Activity: Modeling Electron Movement in a Rechargeable Battery

    In this activity, students will model the electron movement in a rechargeable lithium-ion battery that is found in a cellphone. This model will include understanding the mechanisms of charging and discharging.

  • Redox Reaction, Oxidation, Reduction, Half Reactions, Cathode, Anode, Electron Transfer, Electrolysis, Electrolytic Cells, Error Analysis, Error Analysis, Accuracy, Chemical Change, Accuracy, Dimensional Analysis, Mole Concept, Significant Figures | High School

    Access is an AACT member benefit. Lesson Plan: Recycling Copper from E-Waste

    In this lesson, students will consider the need for innovative solutions to e-waste both from an environmental perspective as well as for the economic benefit to reclaiming raw materials from used electronic devices. They will then take on the role of an electroplate technician who is tasked with evaluating the effectiveness of a copper recycling process that uses electrolysis to purify and recover copper metal from e-waste. As e-waste is a relatively new—and growing—issue, it demonstrates how new industries can develop that utilize skills from existing jobs.

  • Galvanic Cells, Half Reactions, Anode, Cathode, Reduction, Oxidation, Redox Reaction, Electron Transfer, Electrons, Electricity, Spontaneous Reactions , Spontaneous vs. Non-spontaneous Reactions, Electrolytic Cells | High School

    Access is an AACT member benefit. Activity: Animation Activity: Galvanic Cells

    In this activity, students will view an animation that explores how a galvanic cell works on a particulate level. Copper and zinc are the chemicals depicted in the spontaneous reaction. The transfer of electrons and involvement of the salt bridge are highlighted, in addition to the half reactions that take place for Zn (Zn → Zn2+ + 2 e-) and Cu (2 e- + Cu2+ → Cu).

  • Electrolytic Cells, Galvanic Cells, Electrolysis, Redox Reaction, Gibb's Free Energy | High School

    Access is an AACT member benefit. Lesson Plan: Exploration of Electrolytic Cells

    In this lesson, students will build several electrolytic cells, discuss and diagram their cells to further their understanding of electrolysis, and use qualitative and quantitative analysis of the electrolysis of potassium iodide. Finally, students will practice and be assessed on their knowledge of electrolysis on AP exam-level questioning.

Filtered By

Subtopics: Electrolytic Cells

Clear All Filters

Available Filters