Classroom Resources: Molecules & Bonding


Filter by:

  1. Sort by:


1 – 25 of 59 Classroom Resources

  • Physical Properties, Physical Change, Polymers, Molecular Structure, Heat, Monomer | High School

    Video: Ingenious Video 7: The World has a Receipt Problem

    The receipts you take home from the store – or stuff in your bag, or lose in your car -- employ a printing method that’s been around since the 1970s. Thermal printing involves heat-sensitive inks called leuco dyes that show up when they react with an acid developer embedded in the paper. Not only do these inks fade easily, but receipts that use them aren’t recyclable, and could even be dangerous to your health. Taking a cue from a failed experiment, scientists are developing a new kind of receipt paper that will use the same thermal printers without leuco dyes. Instead of acid developers, this paper is coated in reflective microspheres that collapse under heat, allowing regular ink underneath to show through.

  • Physical Properties, Physical Change, Polymers, Molecular Structure, Heat, Monomer | High School

    Activity: Ingenious: The World Has a Receipt Problem Video Questions

    In this activity, students will answer questions while watching the video The World has a Receipt Problem from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the process of thermal printing on receipts, and the limitations related to the paper that currently prints using leuco dyes. This heat-sensitive ink appears when it reacts with an acid developer embedded in the paper. Scientists are working to develop a new kind of thermal receipt paper, that can use the same printers, however it offers many additional benefits and potential uses.

  • Molecular Structure, Molecular Geometry, Lewis Structures | High School

    Lesson Plan: Investigating Real-World Applications of Molecular Geometry

    In this lesson, students use tools to predict the shapes of simple molecules and discuss factors that cause molecules to adopt certain shapes. These concepts are then applied to real-world examples of how geometry impacts the functions of important molecules.

  • Intermolecular Forces, Polarity, Polymers, Molecular Structure, Polymers, Molecular Structure , Functional Groups | High School

    Video: Ingenious Video 6: Kill More Germs by Cleaning … Less?

    There’s clean, and then there’s CLEAN. Even if something looks clean, it might still be harboring microbes – many of them harmless, some of them definitely not. With most of the ways that we clean and disinfect — that is, kill germs — the clean doesn’t last as long as you might think. Disinfectants work by attacking bacterial membranes and viral protein coats, breaking them down so that those germs fall apart and die. But the germaphobes were always right: As soon as a disinfectant dries, and a surface is re-exposed, like if someone touches or (worse) sneezes on it, it needs be disinfected all over again. The next generation of cleaning products, however, add a trick: they lay down an incredibly thin polymer layer that keeps the germ-killing ingredients in place and effective for 24 hours at a time.

  • Intermolecular Forces, Polarity, Molecular Structure, Combustion, Molecular Structure | High School

    Video: Ingenious Video 5: Making Shipping Greener with Hairy Ships

    The “fouling” of boats — when aquatic animals like barnacles and tubeworms attach to hulls — has been a nuisance for as long as we’ve been sailing the seas. Fouling messes up a vessel’s streamlined shape, decreasing its speed, maneuverability, and in modern times, its fuel-efficiency. Fouling spikes the carbon footprint of the shipping industry, already greater than that of most countries. For centuries, people used copper coatings to prevent fouling. Modern solutions use toxic chemical paints that pollute the water, kill marine life, and contribute to the degradation of our oceans when they wear off. A new approach is trying to work with nature instead of against it. Taking inspiration from the Salvinia plant, which is covered in tiny hair-like structures that make it basically waterproof, scientists are developing a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.

  • Intermolecular Forces, Polarity, Polymers, Molecular Structure, Polymers, Molecular Structure , Functional Groups | High School

    Activity: Ingenious: Kill More Germs by Cleaning … Less? Video Questions

    In this activity, students will answer questions while watching the video, Kill More Germs by Cleaning… Less?, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the chemistry of cleaning. Unfortunately, clean doesn’t last as long as you might think—this video examines how disinfectants work and also how long they lasts. Scientists share about the next generation of cleaning products, that keeps the germ-killing ingredients in place and effective much longer.

  • Intermolecular Forces, Polarity, Molecular Structure, Combustion, Molecular Structure | High School

    Activity: Ingenious: Making Shipping Greener with Hairy Ships Video Questions

    In this activity, students will answer questions while watching the video, Making Shipping Greener with Hairy Ships, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the “fouling” of boats (when aquatic animals like barnacles and tubeworms attach to hulls), and the impact it has on fuel efficiency. Since fouling is a significant contributor to the carbon footprint, this video highlights how scientists were inspired by unique aquatic plants to develop a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.

  • Polarity, Molecular Structure, Heat, Radiation | High School

    Lesson Plan: Why Does Carbon Get Such a Bad Rap?

    In this lesson, students will use a climate change scenario to understand the role that polar bonds play in whether a molecule can be considered a greenhouse gas, while learning the particle nature of matter-energy interactions.

  • Solubility, Polymers, Molecular Structure, Polymers, Molecular Structure | High School

    Video: Ingenious Video 4: How Science Is Fixing Recycling's Grossest Problem

    Polypropylene recycling has a problem: It stinks. Food and other residues are almost impossible to remove entirely from polypropylene, a.k.a the number “5” plastic of grocery-store fame. Those residues – anything from yogurt to garlic, from fish oil to baby food – not only stick to polypropylene, they degrade there and start to smell even worse! Current polypropylene recycling techniques are more down-cycling than re-cycling. Unless you break down its molecules through a highly energy-intensive refining process, the material can only get a second life as a black trash can or an underground pipe – wherever its smell doesn’t matter. But a new technique, called dissolution recycling, is changing all that. Dissolution recycling uses a special hydrocarbon polymer solvent under finely controlled conditions of temperature and pressure to eliminate ALL of the contaminants embedded in the plastic.

  • Solubility, Polymers, Molecular Structure, Polymers, Molecular Structure | High School

    Activity: Ingenious: How Science Is Fixing Recycling's Grossest Problem Video Questions

    In this activity, students will answer questions while watching the video, How Science is Fixing Recycling’s Grossest Problem, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the stinky problems associated with polypropylene recycling. Current polypropylene recycling techniques are more down-cycling than re-cycling, but a new technique, called dissolution recycling, is changing all that.

  • Molecular Structure, Electromagnetic Spectrum, Molecular Structure , Chemical Bond | High School

    Video: Ingenious Video 2: What Birds Know About Color that You Don't

    We’ve been using pigments and dyes for thousands of years, but they’re not the whole story when it comes to making color. “Structural” color occurs when tiny nanostructures interact with light waves, amplifying certain colors and canceling others. From brilliant bird feathers to butterfly wings, mole hairs to octopus skin, structural color is everywhere in the natural world. Researchers have tried for years to harness this incredible natural phenomenon in a useful way. Because these colors are so small and complex, and therefore hard to copy, their efforts have met with little success. But novel research using a computer model based in repeated random sampling — a so-called “Monte Carlo” model — is showing promise. Using this approach, scientists have been able to mimic the gorgeous blue of the mountain bluebird in a thin film of reflective beads, leapfrogging millennia of evolution.

  • Molecular Structure, Electromagnetic Spectrum, Molecular Structure , Chemical Bond | High School

    Activity: Ingenious: What Birds Know About Color that You Don't Video Questions

    In this activity, students will answer questions while watching the video, What Birds Know about Color that You Don’t, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates structural color, its complexities as well as how it differs from pigments and dyes.

  • Molecular Structure, Catalysts | High School

    Activity: Ingenious: The Strange Chemistry Behind Why You Get Sick on Planes Video Questions

    In this activity, students will answer questions while watching the video, The Strange Chemistry Behind Why You Get Sick on Planes, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the compound ozone and why it might be responsible for some of the discomforts associated with air travel.

  • Molecular Formula, Molecular Structure, Measurements, Significant Figures, Molecular Structure , Saturated vs. Unsaturated | Middle School, High School

    Project: Discovering Chemical Elements in Food

    In this project, students will analyze nutrition labels of some of the foods and drinks that they recently consumed. They will identify which type of macromolecule (carbohydrates, lipids, proteins) is mainly supplied by the item and they will compare their consumption with the daily recommended intake for that type of macromolecule. Students will also investigate salt and added sugar as well as vitamins and minerals in the item. Finally, students will present their findings through short, spoken messages that are recorded and presented through a QR code. These can become a source of information for the school community at large upon completion of the project.

  • Introduction, Molecular Structure, Matter | High School

    Activity: Real World Particle Diagramming

    In this activity, students illustrate everyday objects on the particulate level. To do this, students pick an object around the school (or their home) and then take a picture of the object, research its composition, and draw a particle diagram representation of the object. This helps students to gain confidence in representing matter at a particulate level by starting with familiar objects.

  • Molecular Structure, Chemical Properties | High School

    Lesson Plan: The Chemistry of Vaccines

    In this lesson, students will read the article, Can a Vaccine End the Pandemic? by Wynne Parry from the December 2020 edition of ChemMatters magazine. Students will answer questions based on the content of the article and also have the opportunity to do additional research. Finally, they will create a podcast discussing the chemistry of vaccines.

  • Interdisciplinary, Lab Safety, Identifying an Unknown, Molecular Structure | High School

    Lesson Plan: How Modern Instrumentation Revolutionized the Poison Game

    In this lesson, students are introduced to the world of Forensic Chemistry using the prologue of Deborah Blum’s The Poisoner’s Handbook. Discussion revolves around why murder by poison was so prevalent during the nineteenth and early twentieth centuries, and why it is so rare today.  Students create their own Safety Data Sheet on a poison of choice, and learn about how mass spectroscopy has helped revolutionize the modern analysis of toxins. 

  • Intermolecular Forces, Polarity, Molecular Structure, Molecular Structure , Functional Groups | High School

    Lab: The Chemistry of Hand Sanitizer and Soap

    In this lab, students will model the interaction between hand sanitizer particles and virus particles, as well as between soap particles and virus particles. They will apply their understanding of molecular structure and intermolecular forces to analyze their observations and behavior of the particles, in order to gain a better understanding of how soaps and sanitizers work.

  • Intermolecular Forces, Molecular Structure, Measurements, SI Units | High School

    Activity: Designing an Effective Respiratory Cloth Mask

    In this activity students will use unit conversion to help compare sizes of molecules, viruses, and droplets and then use them to interpret graphical data. They will then use their findings to design a cloth mask that helps protect its wearer against infection by SARS-CoV-2, the coronavirus that causes COVID-19.

  • Naming Compounds, Molecular Structure, Molecular Structure | High School

    Activity: Naming Alkanes

    In this activity, students will learn how to name simple organic structures including alkanes, branched alkanes and haloalkanes.

  • Intermolecular Forces, Molecular Structure, Molecular Structure | High School

    Lab: Intermolecular Attractions in Organic Liquids

    In this lab, students will analyze the molecular structure of substances in order to predict how different types of intermolecular attractions will affect the boiling points of various organic liquids. Students will then complete laboratory testing in order to collect data and compare their results with their predictions.

  • Electricity, Polymers, Molecular Structure, Heat, Temperature, Molecular Geometry, Electronegativity | Middle School, High School

    Activity: Future of Paint Video Questions

    In this activity, students will watch a video and answer related questions about the fascinating and innovative scientific advancements of paint. During the video, Students will learn how the molecular components in paint are helping to evolve in the world around them.

  • Mixtures, Molecular Structure, Electromagnetic Spectrum | Middle School, High School

    Activity: What are Pigments? Video Questions

    In this activity, students will watch a video and answer related questions about the chemistry of pigment molecules and how they are used to give paints their specific color. During the video, students will learn about the importance of a pigment’s molecular structure, how they are physically suspended to create a paint color, as well as how they interact with light.

  • Mixtures, Intermolecular Forces, Polymers, Molecular Structure, Solute & Solvent, Intermolecular Forces, Electromagnetic Spectrum | Middle School, High School

    Activity: What is Paint? Video Questions

    In this activity, students will watch a video and answer related questions about the composition of paint. During the video, students will learn about the differences between three common paint types, water colors, oil-based and acrylic paint as well as the chemistry of each.

  • Observations, Chemical Change, Physical Change, Molecular Structure | Middle School, High School

    Lab: Determining a Chemical or Physical Change

    In this lab, students will follow a laboratory procedure that instructs them how to heat a small sample of copper(II) sulfate pentahydrate. Students will make observations in order to determine if a chemical or physical change occurs.

Filtered By

Subtopics: Molecular Structure

Grade Level: High School

Clear All Filters

Available Filters