Classroom Resources: Quantitative Chemistry
Filter by:
1 – 16 of 16 Classroom Resources
-
Redox Reaction, Oxidation, Reduction, Half Reactions, Cathode, Anode, Electron Transfer, Electrolysis, Electrolytic Cells, Error Analysis, Error Analysis, Accuracy, Chemical Change, Accuracy, Dimensional Analysis, Mole Concept, Significant Figures | High School
Lesson Plan: Recycling Copper from E-Waste Mark as Favorite (14 Favorites)
In this lesson, students will consider the need for innovative solutions to e-waste both from an environmental perspective as well as for the economic benefit to reclaiming raw materials from used electronic devices. They will then take on the role of an electroplate technician who is tasked with evaluating the effectiveness of a copper recycling process that uses electrolysis to purify and recover copper metal from e-waste. As e-waste is a relatively new—and growing—issue, it demonstrates how new industries can develop that utilize skills from existing jobs.
-
Heat, Temperature, Specific Heat, Law of Conservation of Energy, Enthalpy, Calorimetry, Exothermic & Endothermic, Balancing Equations, Chemical Change, Measurements, Mole Concept, Dimensional Analysis, Culminating Project, Interdisciplinary, Review, Graphing, Observations, Chemical Properties, Physical Properties | High School
Project: Handwarmer Design Challenge Mark as Favorite (41 Favorites)
In this project, students will use their knowledge of thermodynamics to design a handwarmer for a manufacturing company that can maintain a temperature of 30-40°C for at least 5 minutes and is designed for the average human hand. Students will create a final product after rounds of testing and an advertising poster that summarizes the results of their testing and promotes their design.
-
Hess's Law, Calorimetry, Heat, Enthalpy, Error Analysis | High School
Lab: Utilizing Hess's Law Mark as Favorite (43 Favorites)
In this lab, students will use a coffee cup calorimeter to collect data that will allow them to calculate ∆H for two reactions. The first reaction, between sodium bicarbonate and hydrochloric acid is endothermic. The second, between sodium carbonate and hydrochloric pressure, is exothermic. They will then use their experimental values and Hess’s Law to determine ∆H for the decomposition of sodium bicarbonate, compare their calculated value to the theoretical value, and calculate the percent error. This resource includes a prelab presentation and sample calculations.
-
Partial Pressure, Gas Laws, Ideal Gas, Molar Mass, Pressure, Measurements, Error Analysis | High School
Lab: Determination of the Molar Mass of Butane Mark as Favorite (7 Favorites)
In this lab, students will experimentally determine the molar mass of a gas, specifically butane (C4H10), by collection over water. This experiment is an inquiry based experiment for 2nd year chemistry or AP chemistry students who have previously collected an insoluble gas.
-
Limiting Reactant, Conservation of Mass, Stoichiometry, Mole Concept | High School
Animation: Limiting Reactant Animation Mark as Favorite (56 Favorites)
This animation explores what happens in a limiting reactant problem on the particulate level. Assembling a bike is used as an analogy to introduce the concept of limiting reactant, and then the balanced equation of the combustion of methane is used in four quantitative examples to show what it means for a chemical to be a limiting reactant. The concept of the conservation of mass is also demonstrated by calculating masses from the mole quantities of the reactants and products. **This video has no audio**
-
Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Net Ionic Equation, Concentration, Molarity, Precipitate, Solubility, Dimensional Analysis, Mole Concept, Observations, Graphing, Separating Mixtures, Identifying an Unknown | High School
Lab: White Lab Mark as Favorite (55 Favorites)
In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.
-
Titrations, Acid Base Reactions, Indicators, Chemical Change, Stoichiometry, Balancing Equations, Concentration, Molarity, Error Analysis, Dimensional Analysis, Measurements | High School
Lab: Vinegar Quality Control Mark as Favorite (44 Favorites)
In this lab, students will perform a titration of a vinegar sample to determine if it is it close to the concentration claimed on the bottle.
-
Titrations, Equivalence Point, Indicators, Acid Base Reactions, Chemical Change, Salts, Molarity, Reaction Rate, Order of Reaction , Error Analysis | High School
Lab: Titration Lab with Kinetics Mark as Favorite (15 Favorites)
In this lab, students calculate the molarity of an unknown using a titration and also by solving for a dilution.
-
Redox Reaction, Gibb's Free Energy , Spontaneous Reactions , Reduction, Oxidation, Half Reactions, Galvanic Cells, Electrons, Electron Transfer, Cathode, Anode, Reduction Potentials, Exothermic & Endothermic, Spontaneous vs. Non-spontaneous Reactions, Dimensional Analysis | High School
Lesson Plan: How Far Can We Go? Mark as Favorite (8 Favorites)
In this lesson students compare energy densities of lead acid and lithium ion batteries to understand the relationship between electrochemical cell potentials and utilization of stored chemical energy.
-
Heat of Neutralization, Acid Base Reactions, Exothermic & Endothermic, Temperature, Specific Heat, Calorimetry, Bond Energy, Net Ionic Equation, Molarity, Dimensional Analysis, Measurements, Mole Concept | High School
Lab: Heat of Neutralization Mark as Favorite (6 Favorites)
In this lab, students carry out an acid-base reaction to calculate the heat of neutralization based on experimental data. This lab will reinforce the concepts of exothermic and endothermic processes, system and surroundings, and heat of reaction (specifically, neutralization).
-
Chemical Change, Limiting Reactant, Classification of Reactions, Percent Yield, Stoichiometry, Concentration, Molarity, Mole Concept, Dimensional Analysis | High School
Demonstration: First Day Review Mark as Favorite (20 Favorites)
In this demonstration, students see evidence of a chemical reaction.
-
Combustion, Heat of Combustion, Stoichiometry, Balancing Equations, Dimensional Analysis, Interdisciplinary, Culminating Project | High School
Lesson Plan: Redesigning a Car for the Environment Mark as Favorite (26 Favorites)
Chemland’s city public transportation board has requested the class to help them determine the direction the city should move towards in reducing the carbon footprint. Students will be divided into groups and will come up with proposals of how to reduce the carbon footprint from carbon dioxide released from vehicles. The groups will represent different ways to reduce the carbon footprint via an alternative fuel source or a new technology. They will debate their findings to determine the direction that the city council should move towards to reduce the carbon footprint.
-
Catalysts, Reaction Rate, Experimental Design, Scientific Method, Chemical Change, Error Analysis, Balancing Equations, Percent Yield, Stoichiometry, Chemical Change, Measurements, Error Analysis, Dimensional Analysis | High School
Lesson Plan: Catalysis & Catalytic Converters Mark as Favorite (12 Favorites)
In this lesson students will be introduced to catalysts while expanding their knowledge of chemical reactions and stoichiometry. They will first learn about catalytic converters and then be challenged to create the best “catalytic converter” of hydrogen peroxide to oxygen gas in an inquiry-based activity.
-
Titrations, Limiting Reactant, Acid Base Reactions, Indicators, Chemical Change, Equivalence Point, Stoichiometry, Balancing Equations, Chemical Change, Graphing, Error Analysis, Chemical Change, Error Analysis, Measurements, Concentration, Molarity | High School
Lab: Acid-Base Mole Ratio Mark as Favorite (14 Favorites)
In this lab, students study several concepts, including acid-base reactions, limiting reactants, and stoichiometry, by observing the contained reaction of acetic acid (diluted vinegar) with sodium hydrogen carbonate (baking soda) in an unconventional, cost effective titration.
-
Limiting Reactant, Acid Base Reactions, Stoichiometry, Indicators, pH, Dimensional Analysis, Mole Concept, Measurements, Concentration, Molarity | High School
Lab: Acid/Base Stoichiometry Mark as Favorite (13 Favorites)
In this lab, students experience a limiting reactant and can physically see the difference in amounts of product generated. They also see which reactant is in excess.
-
Strong vs Weak, Titrations, Acid Base Reactions, Equivalence Point, Indicators, pH, Concentration, Molarity, Measurements | High School
Lab: Acid Base Reactions Mark as Favorite (7 Favorites)
In this lab, students will witness a reaction between an acid and base. One will be strong, and the other may be weak or strong--it's up to them to determine.