Classroom Resources: Atomic Structure

Filter by:

  1. Sort by:

26 – 50 of 64 Classroom Resources

  • Electromagnetic Spectrum, Emission Spectrum, Emission Spectrum, Electrons | Middle School, High School

    Access is an AACT member benefit. Lesson Plan: Let it Glow Mark as Favorite (38 Favorites)

    In this lesson students will investigate the fluorescence of a variety of everyday items as well as prepared samples under a black light. Students will examine the concepts of absorption and subsequent emission of photons, as well as wavelength, frequency, and energy of electromagnetic radiation. As extension activities, students will learn about phosphorescence and research real-life applications of photoluminescence.

  • Radioactive Isotopes, Atomic Theory, History, Pros Cons of Nuclear Power, Radiation, Subatomic Particles | Middle School, High School

    Access is an AACT member benefit. Activity: Lise Meitner Video Questions Mark as Favorite (16 Favorites)

    In this activity, students will complete a short series of questions as they watch the Founders of Chemistry video about Lise Meitner. The video tells the story of Lise Meitner, a pioneering female scientist in the field of nuclear chemistry, who was denied a Nobel Prize but has an Element named in her honor.

  • Pros Cons of Nuclear Power, Radiation, Radioactive Isotopes, Atomic Theory, Atoms, History | Middle School, High School

    Access is an AACT member benefit. Video: Lise Meitner Video Mark as Favorite (28 Favorites)

    This video tells the story of Lise Meitner, a pioneering female scientist in the field of nuclear chemistry, who was denied a Nobel Prize but has an Element named in her honor.

  • Periodic Table, Elements, History, Subatomic Particles, Atomic Mass, Ionic Bonding, Covalent Bonding | Middle School, High School

    Project: Exploring Elements Mark as Favorite (43 Favorites)

    In this project, students will select an element and then use Ptable.com to explore aspects of the element including its periodicity, electron configuration, history, and uses in industry.

  • Isotopes, Atomic Mass, Subatomic Particles | Middle School, High School

    Activity: Simulation Activity: Isotopes & Calculating Average Atomic Mass Mark as Favorite (91 Favorites)

    In this simulation, students first learn how the average atomic mass is determined through a tutorial based on the isotope abundance for Carbon. Students will then interact within a workspace where they will select the number of isotopes, the mass of each isotope as well as their abundancies in order to successfully build a mystery element. Finally they will use their choices to calculate the average atomic mass of the mystery element.

  • Isotopes, Atomic Mass, Subatomic Particles | Middle School, High School

    Simulation: Isotopes & Calculating Average Atomic Mass Mark as Favorite (71 Favorites)

    In the May 2017 simulation, students first learn how the average atomic mass is determined through a tutorial based on the isotope abundance for Carbon. Students will then interact within a workspace where they will select the number of isotopes, the mass of each isotope as well as their abundancies in order to successfully build a mystery element. Finally they will use their choices to calculate the average atomic mass of the mystery element.

  • Subatomic Particles, Molecular Structure , Photosynthesis | Middle School

    Access is an AACT member benefit. Lesson Plan: Carbon, Carbon Everywhere Mark as Favorite (6 Favorites)

    In this lesson, students will learn about how Carbon cycles through Earth’s systems and its importance for life on Earth.

  • Subatomic Particles, Model of the Atom, Atomic Mass, Electrons | Middle School, High School

    Access is an AACT member benefit. Project: Element Project Mark as Favorite (79 Favorites)

    In this project, students will become familiar with and have a workable understanding of atomic structure. The students will also create and construct a model of an atom.

  • Periodic Table, Elements, Subatomic Particles, Model of the Atom | Elementary School, Middle School

    Access is an AACT member benefit. Activity: Element Brochure Mark as Favorite (8 Favorites)

    In this activity, students will research a common element from the periodic table and create a brochure about it. Students will include information about its atomic structure, subatomic particles, Bohr model, chemical symbol, and common uses.

  • Subatomic Particles, Model of the Atom, Elements, Molecular Formula | Middle School, Elementary School

    Access is an AACT member benefit. Project: What's It Made Of? Mark as Favorite (15 Favorites)

    In this project each student will conduct research to discover what compounds, molecules, and elements make up a basic everyday object of their choice. The student will create a poster detailing what the object is made of, including a Bohr model. The student will also create a question about their object’s atomic structure for their peers as part of a culminating project gallery walk to observe, discuss, and learn about each poster.

  • Subatomic Particles, Model of the Atom, Atomic Theory | Middle School, High School

    Lab: Investigating the Sizes of Atomic Particles Mark as Favorite (61 Favorites)

    In this lab, students will use yarn and peas to compare the sizes of the three subatomic particles and will see that most of an atom is empty space.

  • Periodic Table, Subatomic Particles, History, Introduction, Elements, Atoms, Valence Electrons, Electrons | Middle School

    Access is an AACT member benefit. Project: Elemental Art: A Visual Periodic Table Mark as Favorite (15 Favorites)

    In this activity students will research an assigned element of the Periodic Table and then create a poster that visually explains and expresses the element. The final posters can be arranged into a classroom Periodic Table.

  • Atomic Spectra, Emission Spectrum, Emission Spectrum, Electromagnetic Spectrum, Interdisciplinary, Identifying an Unknown | Middle School, High School

    Access is an AACT member benefit. Lab: Spectral Detective Mark as Favorite (33 Favorites)

    In this lab, students will use a spectroscope to view the atomic spectra of various unknown elements. Using their collected data in combination with known atomic spectra, they will identify the chemical elements.

  • Atomic Theory, Electrons, Model of the Atom, Subatomic Particles, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Niels Bohr Video Mark as Favorite (67 Favorites)

    This video tells the story of Niels Bohr, a great scientist who redefined how we think about atoms and the electron. Bohr’s model of the atom helped to advance understanding of subatomic particles, and holds an important place in the history and development of the atomic theory.

  • Model of the Atom, Subatomic Particles, Atomic Mass, Valence Electrons, Atoms, Periodic Table, Elements | Middle School, High School

    Access is an AACT member benefit. Activity: Mystery Elements Mark as Favorite (70 Favorites)

    The students will work in cooperative groups to construct Bohr models of "mystery" elements and record missing information about each element. Students will also create a new "mystery" element card for a classmate to analyze and determine its identity.

  • Model of the Atom, Periodic Table, Subatomic Particles, Electrons, Valence Electrons, Ions | High School, Middle School

    Access is an AACT member benefit. Lab: Sweet Model of the Atom Mark as Favorite (61 Favorites)

    In this lesson, students will use different candies to represent electrons, protons, and neutrons to gain a better understanding of atoms, ions, and isotopes.

  • Atomic Radius, Ionic Radius, Electrons, Model of the Atom, Subatomic Particles, Periodic Table | Elementary School, Middle School, High School

    Access is an AACT member benefit. Animation: Atomic & Ionic Radii Animation Mark as Favorite (66 Favorites)

    This animation explores patterns in atomic and ionic radii. Students will look at the different sizes of atoms in the third period and the atoms in the sixth group to see trends across periods and down groups. They will also look at an atom and its corresponding cation as well as an atom and its corresponding anion. **This video has no audio**

  • Radioactive Isotopes, History, Subatomic Particles, Model of the Atom, Atomic Theory | Middle School, High School

    Access is an AACT member benefit. Video: Ernest Rutherford Video Mark as Favorite (69 Favorites)

    Rutherford's initial research was studying alpha particles, which he hypothesized were helium nuclei. With the help of Hans Geiger, Rutherford conducted the gold foil experiment, which justifies that the nucleus of an atom is a dense collection of protons and contains the majority of an atom’s mass. It also inferred that most of the atom is empty space and electrons are not located in the nucleus. He won the Nobel Prize in chemistry in 1908 for his studies on radioactive substances.

  • Atomic Mass, Atomic Theory, Model of the Atom, Subatomic Particles, Periodic Table, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Dimitri Mendeleev Video Mark as Favorite (68 Favorites)

    This video tells the story of how Dimitri Mendeleev organized the periodic table, even leaving gaps to be filled in with elements that weren't yet discovered.

  • Atomic Mass, Subatomic Particles | High School, Middle School, Elementary School

    Access is an AACT member benefit. Video: History of the Periodic Table Video Mark as Favorite (122 Favorites)

    In this video, Sam Kean tells the story of the development of the periodic table. He also pays tribute to each of the major scientific contributors, including Dimitri Mendeleev, who made great discoveries through their efforts to best organize the elements.

  • History, Physical Properties, Observations, Model of the Atom | Elementary School, Middle School, High School

    Video: Ancient Chemistry Video Mark as Favorite (70 Favorites)

    This video traces the history of chemistry from the discovery of fire, through the various metal ages, and finally to the great philosophers.

  • Periodic Table, Elements, Introduction, History, Atoms, Electrons, Subatomic Particles | Middle School, Elementary School, High School

    Access is an AACT member benefit. Activity: Writing Your Name using Chemical Element Symbols Mark as Favorite (26 Favorites)

    In this activity, students will use their creativity to spell their name (first or middle name and their last name) using chemical symbols of elements on the periodic table. For example, you can spell Yvonne using the symbols for yttrium (Y), vanadium (V), oxygen (O), nitrogen (N), and neon (Ne).

  • Chemical Change, Strong vs Weak, Salts, Acid & Base Theories, Ions, Conductivity, Mixtures | Middle School

    Access is an AACT member benefit. Lesson Plan: Why Drink Gatorade? Mark as Favorite (1 Favorite)

    In this lesson, students will test different flavors of Gatorade and other liquids to investigate acids and bases. This will take several days unless students already know about acids and bases.

  • Elements, Model of the Atom, History, Introduction, Matter, Observations, Periodic Table, Culminating Project, Atoms | Middle School, High School

    Access is an AACT member benefit. Activity: Is a Picture Worth 1000 Words? Mark as Favorite (2 Favorites)

    In this activity, students will learn about early chemistry discoveries through a textbook reading as well as from a cartoon.

  • Molecular Formula, Ionic Bonding, Covalent Bonding, Molecular Geometry, Naming Compounds, Lewis Structures, Periodic Table, Valence Electrons, Lewis Dot Diagrams, Ions, Subatomic Particles | High School, Middle School

    Activity: Simulation Activity: Ionic and Covalent Bonding Mark as Favorite (118 Favorites)

    In this simulation, students investigate both ionic and covalent bonding. Students will have the opportunity to interact with many possible combinations of atoms and will be tasked with determining the type of bond and the number of atom needed to form each. The simulation visually differentiates between the transferring of electrons when forming an ionic compound and the sharing of electrons when forming a covalent compound so that students can have a complete understanding of each. Finally, students will become familiar with the molecular formula, as well as the naming system for each type of bond and geometric shape, when applicable.

Filtered By

Grade Level: Middle School

Clear All Filters

    Available Filters

    Subtopic
    Type