Classroom Resources: Atomic Structure


Filter by:

  1. Sort by:


1 – 21 of 21 Classroom Resources

  • Ionic Bonding, Naming Compounds, Molecular Formula, Ions, Ionic Radius, Solubility, Melting Point, Physical Properties | High School

    Access is an AACT member benefit. Activity: Ionic Bonding Brackets Mark as Favorite (52 Favorites)

    In this lesson, students will demonstrate their knowledge of ionic bond strength and its relationship to the properties of melting point and solubility using a “brackets” activity. After analyzing the ionic charge and radius to predict the strongest and weakest bond between four pairs of ionic substances, they will then determine which will be the least soluble.

  • Emission Spectrum, Electrons, Electrostatic Forces | High School

    Access is an AACT member benefit. Lesson Plan: Introduction to PES Mark as Favorite (51 Favorites)

    In this lesson students will learn how to interpret simple photoelectron spectroscopy spectra by incorporating their knowledge of electron configurations, periodic trends, and Coulomb’s law.

  • Electrons | High School

    Access is an AACT member benefit. Lab: Determination of the Activation Energy of a Lightstick Mark as Favorite (23 Favorites)

    In this lesson students will participate in an inquiry-based lab approach to determine the activation energy of the chemiluminescent reaction in a lightstick. Students will use the Vernier LabQuest to collect data related to light and temperature for analysis using the Arrhenius equation.

  • Electrostatic Forces, Ionization Energy, Subatomic Particles, Electrons | High School

    Access is an AACT member benefit. Lesson Plan: Coulomb's Law Mark as Favorite (46 Favorites)

    In this lesson students explore qualitative applications of Coulomb’s law within atoms and between ions and solvents.

  • Pros Cons of Nuclear Power, Radiation, Radioactive Isotopes, Atomic Theory, Atoms, History | Middle School, High School

    Access is an AACT member benefit. Video: Lise Meitner Video Mark as Favorite (28 Favorites)

    This video tells the story of Lise Meitner, a pioneering female scientist in the field of nuclear chemistry, who was denied a Nobel Prize but has an Element named in her honor.

  • Atomic Theory, Electrons, Model of the Atom, Subatomic Particles, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Niels Bohr Video Mark as Favorite (62 Favorites)

    This video tells the story of Niels Bohr, a great scientist who redefined how we think about atoms and the electron. Bohr’s model of the atom helped to advance understanding of subatomic particles, and holds an important place in the history and development of the atomic theory.

  • Atomic Radius, Ionic Radius, Electrons, Model of the Atom, Subatomic Particles, Periodic Table | Elementary School, Middle School, High School

    Access is an AACT member benefit. Animation: Atomic & Ionic Radii Animation Mark as Favorite (62 Favorites)

    This animation explores patterns in atomic and ionic radii. Students will look at the different sizes of atoms in the third period and the atoms in the sixth group to see trends across periods and down groups. They will also look at an atom and its corresponding cation as well as an atom and its corresponding anion. **This video has no audio**

  • Model of the Atom, Electrons, Electron Configuration, Quantum Numbers, Subatomic Particles, Periodic Table | High School

    Access is an AACT member benefit. Animation: Orbitals Animation Mark as Favorite (134 Favorites)

    This animation explores the shapes of the 1s, 2s, 2p, 3s, 3p, 4s, and 3d orbitals and how they build up and overlap as each successive orbital is added. **This video has no audio**

  • Polyatomic Ions, Review, Ions | High School

    Access is an AACT member benefit. Activity: Trade Ions Mark as Favorite (11 Favorites)

    In this activity, students will learn common ions by creating notecards and quizzing each other.

  • Review, Subatomic Particles, Ions, Isotopes, Electrons, Atomic Mass, Lewis Dot Diagrams, Model of the Atom, Balancing Equations | High School, Middle School

    Access is an AACT member benefit. Activity: Tic-Tac-Toe Review Mark as Favorite (38 Favorites)

    In this activity students collaborate to complete tic-tac-toe review questions to prepare for a test on the atomic structure unit. The idea behind the activity is to give students choice and you can read more about the inspiration for the activity in the May issue of Chemistry Solutions.

  • Quantum Numbers, Electron Configuration, Electrons, Orbitals | High School

    Access is an AACT member benefit. Lesson Plan: Quantum Numbers Mark as Favorite (30 Favorites)

    In this lesson plan, students complete a worksheet answering questions regarding quantum numbers.

  • Atomic Theory, Law of Conservation of Energy, Electrons, Electromagnetic Spectrum | High School

    Access is an AACT member benefit. Activity: Simulation Activity: Exciting Electrons Mark as Favorite (86 Favorites)

    In this simulation, students will explore what happens when electrons within a generic atom are excited from their ground state. This is a qualitative investigation, not meant to mimic any particular atom.

  • Electrostatic Forces, Subatomic Particles, Electrons, Electricity, Electrons, Graphing | High School

    Access is an AACT member benefit. Lab: Electromagnetic Forces in the Atom Mark as Favorite (2 Favorites)

    In this lab, students will better understand that opposite charges attract each other, and like charges repel.

  • Atomic Radius, Electron Affinity, Ionization Energy, Periodic Table | High School

    Access is an AACT member benefit. Activity: Periodic Trends Investigation Mark as Favorite (96 Favorites)

    In this activity, students investigate trends in atomic radius, electron affinity, and ionization energy using an online interactive periodic table.

  • Electron Affinity, Atomic Radius, Ionic Radius, Periodic Table, Ions, Atoms, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Access is an AACT member benefit. Activity: Periodic Trends II: Electron Affinity, Atomic Radius, & Ionic Radius Mark as Favorite (76 Favorites)

    In this simulation, students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Electrons, Subatomic Particles, Ions, Model of the Atom, Atoms | High School

    Access is an AACT member benefit. Activity: Periodic Trends I: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (158 Favorites)

    In this simulation, students will investigate several periodic trends, including atomic radius, ionization energy and ionic radius. Through the use of this simulation students will have the opportunity to examine atomic data as well as visually compare and interact with select elements from the periodic table.

  • Emission Spectrum, Emission Spectrum, Electromagnetic Spectrum, Subatomic Particles, Electrons, Atoms, Atomic Theory, Model of the Atom | High School

    Lesson Plan: Modeling Energy in Chemistry: Energy and the Electron Mark as Favorite (61 Favorites)

    This activity is designed for students to build a scientific argument about the relationship between energy and spectral lines by exploring how light interacts with atoms. In the process, students will examine proposed models of the hydrogen atom and use collected data to analyze the proposed models. They will then select one of the models and write a scientific argument to support their choice. Students will then review additional data to support and/or refute their selection. Based on their analysis, students will revise their selected model and construct a new argument to support their revisions.  

  • Electron Affinity, Atomic Radius, Ionic Radius, Ions, Atoms, Periodic Table, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Simulation: Periodic Trends II: Electron Affinity, Atomic Radius & Ionic Radius Mark as Favorite (27 Favorites)

    The May 2016 simulation is a follow-up to the March 2016 simulation. Students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Atoms, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Simulation: Periodic Trends: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (92 Favorites)

    In this simulation for the March 2016 issue, students can investigate the periodic trends of atomic radius, ionization energy, and ionic radius. By choosing elements from the periodic table, atoms can be selected for a side by side comparison and analysis. Students can also attempt to ionize an atom by removing its valence electrons. Quantitative data is available for each periodic trend, and can be further examined in a graph.

  • Culminating Project, Review, Physical Properties, Chemical Properties, Periodic Table, History, Interdisciplinary, Electron Configuration, Subatomic Particles, Isotopes, Atomic Mass | High School, Middle School

    Access is an AACT member benefit. Project: 21st Century Elements Mark as Favorite (37 Favorites)

    In this project, students will learn the importance of the elements in our lives. The students will research one chosen element and create a website, a digital comic strip, or a video to explain the important properties of the element as well as why the element is so important to our lives.

  • Atomic Theory, Law of Conservation of Energy, Electrons, Electromagnetic Spectrum | High School

    Simulation: Exciting Electrons Mark as Favorite (57 Favorites)

    In the March 2015 issue, students explore what happens when electrons within a generic atom are excited from their ground state. They will see that when an electron relaxes from an excited state to its ground state, energy is released in the form of electromagnetic radiation.

Filtered By

Advanced Chemistry: AP/IB Chemistry

Clear All Filters

    Available Filters