Classroom Resources: Molecules & Bonding
Filter by:
1 – 11 of 11 Classroom Resources
-
Heat, Physical Properties, Physical Change, Molecular Structure, Monomer, Polymers | High School
Video: Ingenious Video 7: The World has a Receipt Problem Mark as Favorite (7 Favorites)
The receipts you take home from the store – or stuff in your bag, or lose in your car -- employ a printing method that’s been around since the 1970s. Thermal printing involves heat-sensitive inks called leuco dyes that show up when they react with an acid developer embedded in the paper. Not only do these inks fade easily, but receipts that use them aren’t recyclable, and could even be dangerous to your health. Taking a cue from a failed experiment, scientists are developing a new kind of receipt paper that will use the same thermal printers without leuco dyes. Instead of acid developers, this paper is coated in reflective microspheres that collapse under heat, allowing regular ink underneath to show through.
-
Molecular Structure, Intermolecular Forces, Polarity, Polymers, Molecular Structure , Functional Groups, Polymers | High School
Video: Ingenious Video 6: Kill More Germs by Cleaning … Less? Mark as Favorite (1 Favorite)
There’s clean, and then there’s CLEAN. Even if something looks clean, it might still be harboring microbes – many of them harmless, some of them definitely not. With most of the ways that we clean and disinfect — that is, kill germs — the clean doesn’t last as long as you might think. Disinfectants work by attacking bacterial membranes and viral protein coats, breaking them down so that those germs fall apart and die. But the germaphobes were always right: As soon as a disinfectant dries, and a surface is re-exposed, like if someone touches or (worse) sneezes on it, it needs be disinfected all over again. The next generation of cleaning products, however, add a trick: they lay down an incredibly thin polymer layer that keeps the germ-killing ingredients in place and effective for 24 hours at a time.
-
Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School
Video: Ingenious Video 5: Making Shipping Greener with Hairy Ships Mark as Favorite (6 Favorites)
The “fouling” of boats — when aquatic animals like barnacles and tubeworms attach to hulls — has been a nuisance for as long as we’ve been sailing the seas. Fouling messes up a vessel’s streamlined shape, decreasing its speed, maneuverability, and in modern times, its fuel-efficiency. Fouling spikes the carbon footprint of the shipping industry, already greater than that of most countries. For centuries, people used copper coatings to prevent fouling. Modern solutions use toxic chemical paints that pollute the water, kill marine life, and contribute to the degradation of our oceans when they wear off. A new approach is trying to work with nature instead of against it. Taking inspiration from the Salvinia plant, which is covered in tiny hair-like structures that make it basically waterproof, scientists are developing a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.
-
Polymers, Molecular Structure, Molecular Structure , Polymers, Solubility | High School
Video: Ingenious Video 4: How Science Is Fixing Recycling's Grossest Problem Mark as Favorite (2 Favorites)
Polypropylene recycling has a problem: It stinks. Food and other residues are almost impossible to remove entirely from polypropylene, a.k.a the number “5” plastic of grocery-store fame. Those residues – anything from yogurt to garlic, from fish oil to baby food – not only stick to polypropylene, they degrade there and start to smell even worse! Current polypropylene recycling techniques are more down-cycling than re-cycling. Unless you break down its molecules through a highly energy-intensive refining process, the material can only get a second life as a black trash can or an underground pipe – wherever its smell doesn’t matter. But a new technique, called dissolution recycling, is changing all that. Dissolution recycling uses a special hydrocarbon polymer solvent under finely controlled conditions of temperature and pressure to eliminate ALL of the contaminants embedded in the plastic.
-
Catalysts, Molecular Structure | High School
Video: Ingenious Video 1: The Strange Chemistry Behind Why You Get Sick on Planes Mark as Favorite (10 Favorites)
The compound ozone, a known respiratory irritant, exists in high concentrations at flight altitudes, making the “fresh air” sucked in by air conditioners at those heights, well, not so fresh. In fact ozone exposure may be responsible for many of the short-term discomforts we associate with air travel. What’s more, ozone can react with other compounds in the air -- even the oils of our skin -- to produce other toxic compounds, like aldehydes and ketones. Some planes have catalytic converters, like the ones in cars, which use transition metals to turn ozone into breathable oxygen. But not every plane has one!
-
Electromagnetic Spectrum, Molecular Structure, Chemical Bond, Molecular Structure | High School
Video: Ingenious Video 2: What Birds Know About Color that You Don't Mark as Favorite (7 Favorites)
We’ve been using pigments and dyes for thousands of years, but they’re not the whole story when it comes to making color. “Structural” color occurs when tiny nanostructures interact with light waves, amplifying certain colors and canceling others. From brilliant bird feathers to butterfly wings, mole hairs to octopus skin, structural color is everywhere in the natural world. Researchers have tried for years to harness this incredible natural phenomenon in a useful way. Because these colors are so small and complex, and therefore hard to copy, their efforts have met with little success. But novel research using a computer model based in repeated random sampling — a so-called “Monte Carlo” model — is showing promise. Using this approach, scientists have been able to mimic the gorgeous blue of the mountain bluebird in a thin film of reflective beads, leapfrogging millennia of evolution.
-
Introduction, Interdisciplinary, History, Heat, Renewable Energy, Polymers, Molecular Structure | Middle School, High School
Video: Frontiers of Chemistry Mark as Favorite (16 Favorites)
This video explores new scientific developments that were made possible by the application of fundamental chemistry concepts. Students will learn about exciting advances in science and technology focused on three main topics: Solar Cells, 3D Printing and Micro Machines.
-
Molecular Structure, Molecular Geometry, Polymers, Electronegativity, Heat, Temperature, Electricity | Middle School, High School
Video: The Future of Paint Video Mark as Favorite (17 Favorites)
This video explores the fascinating and innovative scientific advancements of paint. Students will learn how the molecular components in paint are helping to evolve in the world around them. Futuristic paint is capable of replacing light switches, conducting electricity, and regulating temperature amongst other things!
-
Mixtures, Solute & Solvent, Intermolecular Forces, Intermolecular Forces, Molecular Formula, Molecular Structure, Polymers, Electromagnetic Spectrum | Middle School, High School
Video: What is Paint? Video Mark as Favorite (17 Favorites)
This video investigates the composition of paint, while analyzing the fundamental chemistry principles of its main components. Students will learn about the differences between three common paint types, water colors, oil-based and acrylic paint as well as the chemistry of each.
-
Electromagnetic Spectrum, Molecular Structure, Mixtures | Middle School, High School
Video: What are Pigments? Video Mark as Favorite (14 Favorites)
This video discusses the chemistry of pigment molecules and how they are used to give paints their specific color. Students will learn about the importance of a pigment’s molecular structure, how they are physically suspended to create a paint color, as well as how they interact with light.
-
Molecular Structure, Molecular Geometry, History, Periodic Table, Molecular Structure | Elementary School, Middle School, High School
Video: Phosphorous Video Mark as Favorite (10 Favorites)
In this video, Sam Kean tells the story of how phosphorus was at the center of the race to discover the structure of DNA.