Classroom Resources: Reactions & Stoichiometry


Filter by:

  1. Sort by:


1 – 25 of 33 Classroom Resources

  • Limiting Reactant, Stoichiometry, Balancing Equations, Conservation of Mass, Conservation of Matter, Combustion, Conservation of Mass, Conservation of Matter | High School

    Access is an AACT member benefit. Activity: Animation Activity: Limiting Reactant Mark as Favorite (2 Favorites)

    In this activity, students will view an animation that explores what happens in a limiting reactant problem on the particulate level. Assembling a bike is used as an analogy to introduce the concept of limiting reactant, and then the balanced equation of the combustion of methane is used in four quantitative examples to show what it means for a chemical to be a limiting reactant. The concept of the conservation of mass is also demonstrated by calculating masses from the mole quantities of the reactants and products.

  • Review, Periodic Table, Physical Properties, Subatomic Particles, Electron Configuration, Covalent Bonding, Ionic Bonding, Naming Compounds, Molecular Geometry, VSEPR Theory, Lewis Structures, Chemical Change, Limiting Reactant, Stoichiometry | High School

    Access is an AACT member benefit. Activity: Chemistry Review Escape Room Mark as Favorite (116 Favorites)

    In this activity, students will work collaboratively to apply their chemistry knowledge in order to “escape the room.” They will work to solve four clues that span a plethora of topics ranging from Atomic Structure all the way up to Stoichiometry. These four clues will point them to four chemical reactions to conduct on a small-scale basis that will correspond with a four-digit combination to a lock. This engaging activity is not only fun for all students but also allows for interactive and collaborative review.

  • Combustion, Chemical Change, Balancing Equations, Reaction Rate, Conservation of Mass, Conservation of Matter, Stoichiometry, Limiting Reactant, Chemical Change, Conservation of Matter, Conservation of Mass, Graphing, Error Analysis, Accuracy, Observations, Inferences, Interdisciplinary, Reaction Rate, Catalysts, Measurements, Mole Concept | High School

    Access is an AACT member benefit. Lesson Plan: Clean Air Chemistry Mark as Favorite (18 Favorites)

    In this lesson, students will learn about air pollution and some steps toward mitigating it. First, they will burn a candle and measure its mass and the concentration of CO2 over time. Students will discuss which data set they have more confidence in and why and then use stoichiometry to predict outcomes. Next, students explore incomplete combustion in a model-based worksheet that shows how a lack of O2 in the burning of fuels can produce air pollution. Students work together to interpret the models, define terms, and draw conclusions. Lastly, students work in groups using Lego models to illustrate how a catalytic converter works. They race “Nature” against catalysts “Palladium,” “Platinum,” and “Rhodium” to see what breaks down air pollution molecules fastest.

  • Limiting Reactant, Stoichiometry, Conservation of Matter | High School

    Access is an AACT member benefit. Lesson Plan: Limiting Reactant and Mole of Reaction Mark as Favorite (0 Favorites)

    In this lesson, students will identify limiting reagents (and the amounts of product produced) using the mole of reaction concept. This approach is designed to focus on calculations related to limiting reactant after a conceptual understanding of what a limiting reactant is has already been established.

  • Stoichiometry, Limiting Reactant, Percent Composition, Lewis Structures, Percent Composition | High School

    Access is an AACT member benefit. Lab: Untouchable Key Escape Room Mark as Favorite (96 Favorites)

    In this lab, students are presented with a key wrapped in aluminum foil a quantity of solid copper (II) chloride, a balance, distilled water and a selection of standard laboratory glassware and equipment. Without using their hands to touch the key, students must react the key with a copper (II) chloride solution in order to free the key and use it to escape from the chemistry classroom!

  • Stoichiometry, Balancing Equations, Limiting Reactant, Percent Yield | High School

    Access is an AACT member benefit. Lesson Plan: A Scaffold Approach to Teaching Stoichiometry Mark as Favorite (53 Favorites)

    In this lesson, students will learn the basics of stoichiometry including determining the amount of reactant needed or product produced, determining the limiting reactant and finally determining percent yield. Additionally they will design their own stoichiometry lab and interpret their collected results.

  • Stoichiometry, Balancing Equations, Limiting Reactant | High School

    Access is an AACT member benefit. Activity: Farfalle Stoichiometry Mark as Favorite (58 Favorites)

    In this activity, students will use a hands-on manipulative (pasta) to represent the stoichiometric relationships in a compound and in a balanced equation. They will determine the limiting reactant for a given amount of two reactants and they will identify the excess reactant. In the extension exercise, students will balance the equations that are used in the production of ammonia, a common chemical fertilizer.

  • Stoichiometry, Balancing Equations, Classification of Reactions, Conservation of Mass, Limiting Reactant, Percent Yield, Dimensional Analysis | High School

    Lesson Plan: Stoichiometry Unit Plan Mark as Favorite (102 Favorites)

    The AACT high school classroom resource library has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the concepts of stoichiometry and limiting reactants to your students.

  • Limiting Reactant, Chemical Change, Conservation of Mass, Stoichiometry, Chemical Change, Observations, Conservation of Mass | High School

    Access is an AACT member benefit. Demonstration: Understanding Limiting Reactants Mark as Favorite (42 Favorites)

    In this demonstration, the teacher will perform a series of reactions between acetic acid (vinegar) and varying amounts of sodium bicarbonate (baking soda) in order to inflate several balloons. Students will observe the reactions and analyze the quantities of reactants used as well as the results in order to understand the concept of limiting reactants.

  • Ionic Bonding, Covalent Bonding, Molecular Formula, Naming Compounds, Stoichiometry, Limiting Reactant, Classification of Reactions | High School

    Access is an AACT member benefit. Activity: Isn't it Ionic Mark as Favorite (48 Favorites)

    In this activity students will form ionic compounds and covalent compounds using clues and questions. Students are going to then develop their own stoichiometric problems and have other groups attempt to solve it.

  • Acid Base Reactions, Stoichiometry, Limiting Reactant | High School

    Access is an AACT member benefit. Lab: Fizzy Drink Mark as Favorite (55 Favorites)

    In this lab, students will learn the properties of acid and bases while applying the principles of stoichiometry to calculate the amount of base needed to neutralize an acid completely and produce a bubbly drink.

  • Limiting Reactant, Dimensional Analysis, Stoichiometry | High School

    Access is an AACT member benefit. Lesson Plan: Map to Solving Limiting Reactant Problems Mark as Favorite (16 Favorites)

    In this lesson, students will learn how to follow a step-by-step problem solving method for limiting reactant stoichiometry problems. This method can be particularly beneficial for students who struggle with completing these calculations.

  • Limiting Reactant, Conservation of Mass, Stoichiometry, Mole Concept | High School

    Access is an AACT member benefit. Animation: Limiting Reactant Animation Mark as Favorite (53 Favorites)

    This animation explores what happens in a limiting reactant problem on the particulate level. Assembling a bike is used as an analogy to introduce the concept of limiting reactant, and then the balanced equation of the combustion of methane is used in four quantitative examples to show what it means for a chemical to be a limiting reactant. The concept of the conservation of mass is also demonstrated by calculating masses from the mole quantities of the reactants and products. **This video has no audio**

  • Limiting Reactant, Stoichiometry, Dimensional Analysis, Mole Concept, Scientific Method | High School

    Access is an AACT member benefit. Lab: Limiting Reactants in Brownies Mark as Favorite (23 Favorites)

    In this lesson, students will investigate the idea of limiting reactant using a brownie recipe.

  • Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Measurements, Observations, Error Analysis, Separating Mixtures, Error Analysis, Dimensional Analysis, Mole Concept | High School

    Access is an AACT member benefit. Lab: Limiting Reactant Lab Mark as Favorite (69 Favorites)

    In this lab, students react copper(II) chloride with aluminum to determine the limiting reactant. They then isolate one product to determine their percent yield.

  • Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Chemical Change, Error Analysis, Dimensional Analysis, Acid Base Reactions, pH | High School

    Access is an AACT member benefit. Lab: Limiting Reactant in a Balloon Mark as Favorite (51 Favorites)

    In this lab, students perform a reaction between acetic acid and sodium bicarbonate and determine the amount of product formed and the limiting reactant.

  • Limiting Reactant | High School

    Access is an AACT member benefit. Lab: Limiting Reactant Candy Mark as Favorite (19 Favorites)

    In this lab, students will understand what is meant by the term, "limiting reactant" and be able to identify the limiting reactant in a non-chemistry situation.

  • Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Net Ionic Equation, Concentration, Molarity, Precipitate, Solubility, Dimensional Analysis, Mole Concept, Observations, Graphing, Separating Mixtures, Identifying an Unknown | High School

    Access is an AACT member benefit. Lab: White Lab Mark as Favorite (49 Favorites)

    In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.

  • Limiting Reactant, Balancing Equations, Stoichiometry, Observations, Chemical Change | High School

    Access is an AACT member benefit. Lesson Plan: Observing the Limiting Reactant Mark as Favorite (12 Favorites)

    In this lesson, students will be introduced to the concept of limiting reactants by applying various literacy strategies to a one-page informational text and through a short demonstration (or lab). The reading and demo will help students create connections between the macroscopic, particulate, and symbolic representations of chemical reactions and limiting reactants.

  • Limiting Reactant, Balancing Equations, Stoichiometry, Conservation of Mass | High School

    Access is an AACT member benefit. Activity: Limiting Reactants Using Particulate Diagrams Mark as Favorite (36 Favorites)

    In this activity, students will practice drawing particulate diagrams to help them determine the limiting reactant given a certain number of reactant molecules. Students’ practice with particulate diagrams will help them better visualize and understand limiting reactant calculations. The visualizations provided in this activity are helpful at all levels, from beginning chemistry students up through AP chemistry students, who will need to be comfortable with particulate diagrams for the AP exam.

  • Combustion, Limiting Reactant, Catalysts, Gas Laws, Stoichiometry, Activation Energy, Enthalpy, Energy Diagrams, Experimental Design | High School

    Access is an AACT member benefit. Lab: Launching Rockets Mark as Favorite (75 Favorites)

    In this lab, students create a stoichiometric mixture of hydrogen and oxygen gases to launch a soda bottle rocket.

  • Conservation of Mass, Balancing Equations, Limiting Reactant, Introduction, Conservation of Mass | Middle School, High School

    Access is an AACT member benefit. Activity: Kinesthetic Reactions Mark as Favorite (5 Favorites)

    In this lesson students, through their physical movement, will model the law of conservation of mass during a chemical reaction. Students will also explore the concepts of limiting and excess reactants as well as balancing a chemical equation. Through this activity they also develop a means of representing particles at the molecular level.

  • Limiting Reactant, Chemical Change, Conservation of Mass, Stoichiometry, Observations, Inferences, Chemical Change, Exothermic & Endothermic | High School

    Access is an AACT member benefit. Demonstration: Introducing Limiting Reactants Mark as Favorite (14 Favorites)

    In this demonstration, the teacher will perform a series of reactions between acetic acid--vinegar-- and varying amounts of sodium bicarbonate --baking soda--in order to inflate several Ziploc bags. Students will observe the reactions and analyze the quantities of reactants used as well as the results in order to understand the concept of limiting reactants. Students will also determine if the reaction is an endothermic or exothermic process based on their observations.

  • Limiting Reactant, Stoichiometry, Balancing Equations, Mole Concept, Dimensional Analysis, Molar Mass | High School

    Activity: Sweet Stoichiometry Reactions Mark as Favorite (58 Favorites)

    In this activity, students will use candy to investigate stoichiometry and mole-gram relationships in chemical equations, but could also be used to introduce the concept of limiting reactants.

  • Balancing Equations, Limiting Reactant, Stoichiometry, Dimensional Analysis, Mole Concept, Measurements | High School

    Access is an AACT member benefit. Activity: S'more Stoichiometry Mark as Favorite (58 Favorites)

    In this activity, students determine the number of graham crackers and chocolate pieces required to complete a “reaction” with a given quantity of marshmallows (the limiting reactant). They then use the same thought process with a problem involving a real chemical reaction.

Filtered By

Subtopics: Limiting Reactant

Grade Level: High School

Clear All Filters

    Available Filters