Classroom Resources: Reactions & Stoichiometry


Filter by:

  1. Sort by:


1 – 25 of 237 Classroom Resources

  • Net Ionic Equation, Precipitate, Solubility, Solubility Rules, Balancing Equations | High School

    Access is an AACT member benefit. Activity: Animation Activity: Net Ionic Equations

    In this activity, students will us an animation to visualize what happens in a precipitate reaction on the particulate level, and they will see why writing a net ionic equation accurately represents what happens in these scenarios. An example of diluting a soluble solid, mixing two aqueous reactants that yield aqueous products, and mixing two aqueous reactants that yield a precipitate are part of this animation.

  • Limiting Reactant, Stoichiometry, Balancing Equations, Conservation of Mass, Conservation of Matter, Combustion, Conservation of Mass, Conservation of Matter | High School

    Access is an AACT member benefit. Activity: Animation Activity: Limiting Reactant

    In this activity, students will use an animation to visualize on the particulate level what happens in a limiting reactant problem. Assembling a bike is used as an analogy to introduce the concept of limiting reactant, and then the balanced equation of the combustion of methane is used in four quantitative examples to show what it means for a chemical to be a limiting reactant. The concept of the conservation of mass is also demonstrated by calculating masses from the mole quantities of the reactants and products.

  • Temperature, Temperature, Heat, Photosynthesis, Isotopes | High School

    Lesson Plan: Climate Change and the Keeling Curve

    In this lesson, students will learn about climate change through reading about research behind carbon dioxide emissions, which led to the development of the Keeling Curve. Isotopic tracing as well as photosynthesis are briefly touched on. There are a series of activities to help promote literacy in the science classroom related to the reading. This lesson could be easily used as plans for a substitute teacher, as most of the activities are self-guided.

  • Redox Reaction, Oxidation, Reduction, Half Reactions, Reaction Rate, Reaction Rate | High School

    Access is an AACT member benefit. Lab: Stop The Science: Redox Regulation

    In this lab, students will investigate oxidation-reduction reactions while creating a complex picture using reactions of copper solutions on aluminum foil. Students will also apply previous knowledge of reaction rate to adjust concentrations, allowing for artistic expression such as shadowing and layering in their artwork.

  • Chemical Change | High School

    Access is an AACT member benefit. Demonstration: Creating Light with Luminol

    In this demonstration, students will observe a chemical reaction that releases energy in the form of light, demonstrating chemiluminescence.

  • Activity Series, Redox Reaction, Half Reactions, Oxidation, Reduction, Chemical Change, Predicting Products | High School

    Access is an AACT member benefit. Lab: The Corrosion of Iron

    In this lab, students will investigate the process of corrosion, a redox reaction, by analyzing how iron nails react in varied environments. Students will combine their prior knowledge with research about the reactivity of metals to make predictions in advance of the lab investigation.

  • Precipitate, Solubility, Solubility Rules, Predicting Products | High School

    Access is an AACT member benefit. Lesson Plan: Investigating Precipitate Formation

    In this lesson, students will learn about lead and the contamination of drinking water. Through collaboration, students will then consider strategies for decontaminating water, and have the opportunity to perform small-scale precipitation reactions as a method of extracting metal ions from a water sample. Finally, students can conduct research and reflect on their experience to propose a possible solution for decontaminating drinking water.

  • Chemical Properties, Physical Properties, Chemical Change, Physical Change, Mixture, Chemical Structure, Chemical Change, Culminating Project | High School

    Access is an AACT member benefit. Project: Analyze a Family Recipe

    In this project, students will select a family recipe, or a favorite recipe to investigate. They will analyze several of the ingredients in order learn more about the chemistry of each one, as well as their purpose in the recipe. Additionally, students will examine several ingredient interactions to learn more about the chemistry of cooking.

  • Heat, Temperature, Specific Heat, Law of Conservation of Energy, Enthalpy, Calorimetry, Exothermic & Endothermic, Balancing Equations, Chemical Change, Measurements, Mole Concept, Dimensional Analysis, Culminating Project, Interdisciplinary, Review, Graphing, Observations, Chemical Properties, Physical Properties | High School

    Access is an AACT member benefit. Project: Handwarmer Design Challenge

    In this project, students will use their knowledge of thermodynamics to design a handwarmer for a manufacturing company that can maintain a temperature of 30-40°C for at least 5 minutes and is designed for the average human hand. Students will create a final product after rounds of testing and an advertising poster that summarizes the results of their testing and promotes their design.

  • Review, Periodic Table, Physical Properties, Subatomic Particles, Electron Configuration, Covalent Bonding, Ionic Bonding, Naming Compounds, Molecular Geometry, VSEPR Theory, Lewis Structures, Chemical Change, Limiting Reactant, Stoichiometry | High School

    Access is an AACT member benefit. Activity: Chemistry Review Escape Room

    In this activity, students will work collaboratively to apply their chemistry knowledge in order to “escape the room.” They will work to solve four clues that span a plethora of topics ranging from Atomic Structure all the way up to Stoichiometry. These four clues will point them to four chemical reactions to conduct on a small-scale basis that will correspond with a four-digit combination to a lock. This engaging activity is not only fun for all students but also allows for interactive and collaborative review.

  • Stoichiometry, Balancing Equations, Predicting Products, Chemical Change, Mole Concept, Dimensional Analysis, Measurements, Chemical Change, Culminating Project | High School

    Access is an AACT member benefit. Project: Chemical Reaction Soda Bottle Boat Race

    In this project, students will design and build a soda bottle boat with the goal of having the fastest boat to get to the other end of the rain gutter racetrack. Students will have to complete stoichiometric calculations to determine an appropriate amount of “fuel” (baking soda + vinegar) to power their boat.

  • Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School

    Access is an AACT member benefit. Video: Ingenious Video 5: Making Shipping Greener with Hairy Ships

    The “fouling” of boats — when aquatic animals like barnacles and tubeworms attach to hulls — has been a nuisance for as long as we’ve been sailing the seas. Fouling messes up a vessel’s streamlined shape, decreasing its speed, maneuverability, and in modern times, its fuel-efficiency. Fouling spikes the carbon footprint of the shipping industry, already greater than that of most countries. For centuries, people used copper coatings to prevent fouling. Modern solutions use toxic chemical paints that pollute the water, kill marine life, and contribute to the degradation of our oceans when they wear off. A new approach is trying to work with nature instead of against it. Taking inspiration from the Salvinia plant, which is covered in tiny hair-like structures that make it basically waterproof, scientists are developing a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.

  • Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School

    Access is an AACT member benefit. Activity: Ingenious: Making Shipping Greener with Hairy Ships Video Questions

    In this activity, students will answer questions while watching the video, Making Shipping Greener with Hairy Ships, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the “fouling” of boats (when aquatic animals like barnacles and tubeworms attach to hulls), and the impact it has on fuel efficiency. Since fouling is a significant contributor to the carbon footprint, this video highlights how scientists were inspired by unique aquatic plants to develop a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.

  • Solubility Rules, Solubility, Ionic Bonding, Predicting Products | High School

    Access is an AACT member benefit. Activity: Solubility Rules Dice Game

    In this activity, students will use ion dice to form a number of different ionic compounds. Based on the resulting ionic compound, they will use a solubility chart to determine if it is soluble or insoluble. This game will allow students to become more familiar with ionic compounds and solubility rules.

  • Identifying an Unknown, Experimental Design, Scientific Method, Chemical Change, Net Ionic Equation, Precipitate, Solubility, Solubility Rules, Balancing Equations, Predicting Products, Chemical Change | High School

    Access is an AACT member benefit. Lab: Mislabeled Mess!

    In this lab, students will identify 3 unknown acids by using the solubility rules. They will be given a list of materials and will design their own procedures for identifying the unknowns. For each combination of reactants, they will predict whether a product forms and, if it does, write complete and net ionic equations for those reactions.

  • Reaction Rate, Concentration, Reaction Rate | High School

    Access is an AACT member benefit. Lab: How Fast Can We Remove Tough Stains?

    In this lab, students explore how temperature and concentration can affect reaction rate. Using various mixtures of OxiClean solutions, blue food coloring, and water students conduct several tests and draw conclusions based on their results.

  • Reaction Rate, Catalysts, Experimental Design, Chemical Change, Reaction Rate, Chemical Change | Middle School

    Access is an AACT member benefit. Lesson Plan: Investigating Fast and Slow Reaction Rates

    In this lesson, students will review the characteristics of chemical changes and then use a catalyst and an inhibitor to explore the reaction rate of the oxidation of iron.

  • Molecular Structure, Catalysts | High School

    Video: Ingenious Video 1: The Strange Chemistry Behind Why You Get Sick on Planes

    The compound ozone, a known respiratory irritant, exists in high concentrations at flight altitudes, making the “fresh air” sucked in by air conditioners at those heights, well, not so fresh. In fact ozone exposure may be responsible for many of the short-term discomforts we associate with air travel. What’s more, ozone can react with other compounds in the air -- even the oils of our skin -- to produce other toxic compounds, like aldehydes and ketones. Some planes have catalytic converters, like the ones in cars, which use transition metals to turn ozone into breathable oxygen. But not every plane has one!

  • Solubility, Conductivity, Concentration, Equilibrium Constants, Stoichiometry | High School

    Access is an AACT member benefit. Lab: Experimental Determination of the Solubility Product Constant for Calcium Hydroxide

    In this lab, students will predict and measure the relationship between the conductivity of a solution of calcium hydroxide and the mass of substance added to it. From the relationship, students will determine solubility and Ksp of calcium hydroxide. Ksp will be calculated using the molar concentration of ions in the solution and the equilibrium expression for the dissociation of calcium hydroxide.

  • Classification of Reactions, Conservation of Matter | High School, Middle School

    Access is an AACT member benefit. Lesson Plan: An Introduction to Chemical Reactions: A Story of a Valentine’s Day Dance

    In this lesson, students will be introduced to five basic types of chemical reactions through a metaphor about a high school dance. Afterwards students will complete research to fill out a graphic organizer and reinforce the introductory information.

  • Activity Series, Balancing Equations, Predicting Products, Chemical Change, Chemical Change, Observations | High School

    Access is an AACT member benefit. Lab: Activity Series of Unknown Metals

    In this lab, students will create an activity series of metals from a series of reactions involving unknown metals. They will then compare their activity series and a list of metals used in this lab (supplied by the teacher after data collection) to a published activity series to identify the unknown metals.

  • Observations, Mixtures, Chemical Change, Physical Change, Chemical Change, pH | Elementary School

    Access is an AACT member benefit. Demonstration: The Chemistry of Cheese

    In this demonstration, students will observe the chemical process that occurs when making cheese. Students will be become more familiar with fundamental chemistry terms while making important observations.

  • Classification of Reactions, Redox Reaction, Activity Series, Oxidation, Reduction | High School

    Access is an AACT member benefit. Lab: Investigating Oxidation-Reduction Reactions

    In this lab, students will observe, classify and predict the products of single replacement, combination and decomposition reactions and provide a rationale for how reactions are classified using evidence from the lab and classroom.

  • Activity Series, Chemical Change, Electrons, Electron Transfer, Balancing Equations, Chemical Change, Predicting Products, Observations, Acid Base Reactions | High School

    Simulation: Metals In Aqueous Solutions

    In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.

  • Activity Series, Electrons, Electron Transfer, Balancing Equations, Predicting Products, Chemical Change, Chemical Change, Observations | High School

    Access is an AACT member benefit. Activity: Simulation Activity: Metals in Aqueous Solutions

    In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.

Available Filters