Classroom Resources: Reactions & Stoichiometry


Filter by:

  1. Sort by:


1 – 25 of 172 Classroom Resources

  • Catalysts, Molecular Structure | High School

    Video: Ingenious Video 1: The Strange Chemistry Behind Why You Get Sick on Planes

    The compound ozone, a known respiratory irritant, exists in high concentrations at flight altitudes, making the “fresh air” sucked in by air conditioners at those heights, well, not so fresh. In fact ozone exposure may be responsible for many of the short-term discomforts we associate with air travel. What’s more, ozone can react with other compounds in the air -- even the oils of our skin -- to produce other toxic compounds, like aldehydes and ketones. Some planes have catalytic converters, like the ones in cars, which use transition metals to turn ozone into breathable oxygen. But not every plane has one!

  • Reaction Rate, Concentration, Reaction Rate | High School

    Lab: How Fast Can We Remove Tough Stains?

    In this lab, students explore how temperature and concentration can affect reaction rate. Using various mixtures of OxiClean solutions, blue food coloring, and water students conduct several tests and draw conclusions based on their results.

  • Solubility, Concentration, Conductivity, Stoichiometry, Equilibrium Constants | High School

    Lab: Experimental Determination of the Solubility Product Constant for Calcium Hydroxide

    In this lab, students will predict and measure the relationship between the conductivity of a solution of calcium hydroxide and the mass of substance added to it. From the relationship, students will determine solubility and Ksp of calcium hydroxide. Ksp will be calculated using the molar concentration of ions in the solution and the equilibrium expression for the dissociation of calcium hydroxide.

  • Conservation of Matter, Classification of Reactions | Middle School, High School

    Lesson Plan: An Introduction to Chemical Reactions: A Story of a Valentine’s Day Dance

    In this lesson, students will be introduced to five basic types of chemical reactions through a metaphor about a high school dance. Afterwards students will complete research to fill out a graphic organizer and reinforce the introductory information.

  • Observations, Chemical Change, Balancing Equations, Chemical Change, Activity Series, Predicting Products | High School

    Lab: Activity Series of Unknown Metals

    In this lab, students will create an activity series of metals from a series of reactions involving unknown metals. They will then compare their activity series and a list of metals used in this lab (supplied by the teacher after data collection) to a published activity series to identify the unknown metals.

  • Classification of Reactions, Reduction, Activity Series, Redox Reaction, Oxidation | High School

    Lab: Investigating Oxidation-Reduction Reactions

    In this lab, students will observe, classify and predict the products of single replacement, combination and decomposition reactions and provide a rationale for how reactions are classified using evidence from the lab and classroom.

  • Observations, Chemical Change, Balancing Equations, Chemical Change, Activity Series, Acid Base Reactions, Electron Transfer, Electrons, Predicting Products | High School

    Simulation: Metals In Aqueous Solutions

    In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.

  • Observations, Chemical Change, Balancing Equations, Chemical Change, Activity Series, Electron Transfer, Electrons, Predicting Products | High School

    Activity: Simulation Activity: Metals in Aqueous Solutions

    In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.

  • Balancing Equations, Combustion, Classification of Reactions, Chemical Change, Acid Base Reactions | Middle School, High School

    Animation: Classifying Chemical Reactions Animation

    In this animation, students will learn about some of the ways to classify different types of chemical reactions. It covers synthesis (combination), decomposition, single replacement (single displacement), double replacement (double displacement), combustion, and acid-base neutralization reactions.

  • Balancing Equations, Classification of Reactions, Chemical Change, Acid Base Reactions | Middle School, High School

    Activity: Animation Activity: Classifying Chemical Reactions

    In this activity, students will learn about some of the ways to classify different types of chemical reactions. It covers synthesis (combination), decomposition, single replacement (single displacement), double replacement (double displacement), combustion, and acid-base neutralization reactions.

  • Interdisciplinary, Chemical Change, Molecular Structure , Functional Groups, Experimental Design | High School

    Lab: Designing Biomimetic Songbird Preen Oil from Waste Cooking Oil

    In this guided-inquiry lab, students will design and test a procedure reacting waste cooking oil in a blue cheese slurry to create a substance that mimics songbird preen oil, which is both antibacterial and hydrophobic. Students will convert the fatty acids in waste oil to methyl ketones, thought to be the principal antibacterial component of preen oil, using the P. roqueforti mold found in blue cheese. Students will expand their knowledge of biomimicry, inherent properties of preen oil, and chemical synthesis by applying the principles of green chemistry. They will also assess their own process through higher-order problem solving and building on their scientific research skills.

  • Conservation of Matter, Stoichiometry, Limiting Reactant | High School

    Lesson Plan: Limiting Reactant and Mole of Reaction

    In this lesson, students will identify limiting reagents (and the amounts of product produced) using the mole of reaction concept. This approach is designed to focus on calculations related to limiting reactant after a conceptual understanding of what a limiting reactant is has already been established.

  • Reaction Rate, Chemical Change, Chemical Change, Exothermic & Endothermic, Heat, Temperature | High School

    Lab: A Comparison of Two Chemical Reactions

    In this lab, students will perform two chemical reactions, one between acetic acid and sodium bicarbonate and the other between the citric acid and the sodium bicarbonate in an Alka-Seltzer tablet when dissolved in water. Both reactions will produce gas while reacting in a closed plastic sandwich bag, causing it to inflate. Students will observe the reactions and analyze the results in order to understand indicators of chemical changes, heat flow, and factors that affect reaction rates

  • Percent Composition, Stoichiometry, Limiting Reactant, Percent Composition, Lewis Structures | High School

    Lab: Untouchable Key Escape Room

    In this lab, students are presented with a key wrapped in aluminum foil a quantity of solid copper (II) chloride, a balance, distilled water and a selection of standard laboratory glassware and equipment. Without using their hands to touch the key, students must react the key with a copper (II) chloride solution in order to free the key and use it to escape from the chemistry classroom!

  • Observations, Chemical Change, Chemical Change, Activity Series, Predicting Products | High School

    Project: Wastewater Recovery

    In this project, students will analyze test results in order to design a procedure for recovering certain metals from wastewater using their knowledge of the Activity Series of Metals and single replacement reactions. Based on their analysis, students will create a proposal for presentation in an effort to recommend the best plan for reclaiming the metals from the wastewater.

  • Balancing Equations, Percent Yield, Stoichiometry, Limiting Reactant | High School

    Lesson Plan: A Scaffold Approach to Teaching Stoichiometry

    In this lesson, students will learn the basics of stoichiometry including determining the amount of reactant needed or product produced, determining the limiting reactant and finally determining percent yield. Additionally they will design their own stoichiometry lab and interpret their collected results.

  • Introduction, History, Renewable Energy, Interdisciplinary, Polymers, Heat, Molecular Structure | Middle School, High School

    Video: Frontiers of Chemistry

    This video explores new scientific developments that were made possible by the application of fundamental chemistry concepts. Students will learn about exciting advances in science and technology focused on three main topics: Solar Cells, 3D Printing and Micro Machines.

  • Catalysts, Combustion, Reduction, Redox Reaction, Oxidation, Activation Energy | High School

    Activity: Catalytic Converters Video Questions

    In this activity, students will watch a video and answer related questions about the role of a catalytic converter and its corresponding chemical reactions within a vehicle. Students will learn about both oxidation and reduction reactions as well as the purpose of a catalyst.

  • Observations, Physical Change, Chemical Change, Polarity, Molecular Structure, Chemical Change, Lewis Structures | High School

    Lab: DIY Triiodide

    In this lab, students will investigate how iodine interacts with various substances. They will use color changes to justify whether a chemical or physical change is taking place. This activity is referenced in the October 2019 ChemMatters article called “Cash, Chemistry, and Counterfeiting.”

  • Polymers, Combustion, Exothermic & Endothermic, Heat, Heat of Combustion, Molecular Structure | High School

    Activity: The Internal Combustion Engine Video Questions

    In this activity, students will watch a video and answer related questions about the mechanical and chemical processed used in the internal combustion engine. Additionally they will learn about reactions and fuel types as well as the history and evolution of the combustion engine.

  • Concentration, Identifying an Unknown, Molarity, Balancing Equations, Classification of Reactions, Chemical Change | High School

    Lab: An Environmental Impact Study

    In this lab, students will test a water sample which comes from a local zoo, where, it is reported that many bird eggs are not hatching. Students will test the water for the presence of multiple ions. Once the type of ion in the water is determined, students will write balanced equations to illustrate their findings. Students will also conduct a serial dilution to determine the concentration, or molarity, of the ion in the water sample. This molarity will be compared to known values to determine if the materials in the water are at an unhealthy level.

  • Balancing Equations, Stoichiometry, Limiting Reactant | High School

    Activity: Farfalle Stoichiometry

    In this activity, students will use a hands-on manipulative (pasta) to represent the stoichiometric relationships in a compound and in a balanced equation. They will determine the limiting reactant for a given amount of two reactants and they will identify the excess reactant. In the extension exercise, students will balance the equations that are used in the production of ammonia, a common chemical fertilizer.

  • Gas Laws, Stoichiometry, Mole Concept | High School

    Lab: Investigating the Self-Inflating Balloon

    In this lab, students will investigate the chemical reaction used in the self-inflating balloon. They will apply their knowledge of gas laws and stoichiometry in order to determine the quantities of reactants used to inflate the balloon.

  • Balancing Equations, Conservation of Mass, Chemical Change | Middle School, High School

    Demonstration: Identifying Chemical Reactions

    In this demonstration, students observe a series of teacher led demonstrations to learn how to identify evidence that a chemical reaction has occurred, how to write a word equation to explain a chemical reaction, and how to convert a word equation to a balanced chemical equation.

  • Physical Change, Chemical Change, Chemical Change, Activity Series, Redox Reaction | High School

    Demonstration: Understanding the Discrepant Reactivity of Copper in the Presence of Strong Acids

    In this demonstration, students practice their observation skills during the additions of different acids to two test tubes containing copper. The activity is structured to allow students to make thoughtful remarks about what they observe, using rich indicators of both chemical and physical properties and changes. In subsequent lessons on new concepts, students can reflect back on their observations to rationalize the discrepant results of the reactions in the demonstration.

Filtered By

Grade Level: High School

Clear All Filters

Available Filters