Classroom Resources: Solutions

Filter by:

  1. Sort by:

51 – 57 of 57 Classroom Resources

  • Solute & Solvent, Intermolecular Forces, Solubility | Middle School, High School

    Access is an AACT member benefit. Activity: Basic Modeling of the Dissolving Phenomenon Mark as Favorite (54 Favorites)

    In this activity, students explore the process of salt dissolving in water using cut-outs of ions and water molecules to model interactions between them. They then use their model to make a prediction about the relative solubility of salt in isopropyl alcohol compared to the solubility in water and design an experiment to test their prediction.

  • Solubility, Solute & Solvent, Intermolecular Forces | Middle School, High School

    Access is an AACT member benefit. Activity: Advanced Modeling of the Dissolving Phenomenon Mark as Favorite (29 Favorites)

    In this activity students build a model of sodium chloride based on their own knowledge of ionic compounds. Then they construct a model of the interactions between water and their salt model to develop an understanding of what caused the salt to dissolve. After refining their models based upon class discussions and critiques, students then construct a model of the interaction between salt and a different solvent, alcohol. Using their models, students make predictions as to which solvent (water or alcohol) would be better at dissolving the salt. Finally students design an experiment to test their prediction. As an extension, students are asked to use their solubility models to explain why calcium carbonate will not dissolve in water, even though it is also an ionic compound.

  • Solubility, Solute & Solvent, Precipitate, Saturated/Unsaturated/Supersaturated | High School, Elementary School, Middle School

    Access is an AACT member benefit. Lab: Winter Crystals Mark as Favorite (48 Favorites)

    In this lab, students will create a supersaturated solution by dissolving borax in boiling water. They will create a snowflake using pipe cleaner to suspend in the solution, which will serve as a nucleation site for crystallization as the solution cools and remains undistributed overnight. This lab gives students an opportunity to experience the exciting crystallization process and become more familiar with an engaging chemistry spectacle!

  • Stoichiometry, Balancing Equations, Reaction Rate, Solubility | High School

    Access is an AACT member benefit. Lab: Analyzing the Reaction between Baking Soda and Citric Acid Mark as Favorite (48 Favorites)

    In this lab, students will examine the reaction between citric acid and baking soda. They will analyze the chemical equation, balance it and calculate needed quantities of each reactant for a complete reaction. Based on their observations, students will determine if all reactants were completely used during the reaction.

  • Solubility, Solute & Solvent, Concentration, Pressure, Temperature | High School

    Access is an AACT member benefit. Demonstration: Exploring Gas Solubility Mark as Favorite (14 Favorites)

    In this demonstration, students will explore how changes in pressure and temperature affect the solubility of a gas in an aqueous solution. In addition, students will have the opportunity in a post-demonstration reflection activity to practice using data (in this case their demonstration observations) to make evidence based claims.

  • Solubility, Solute & Solvent | High School

    Access is an AACT member benefit. Demonstration: Root Beer Chemistry Mark as Favorite (12 Favorites)

    In this demonstration, students will understand the factors affecting solubility of both a solid and a gas in a liquid through the process of making root beer.

  • Solubility, Solute & Solvent | Middle School, High School

    Access is an AACT member benefit. Lab: What's the Solution? Mark as Favorite (36 Favorites)

    In this lab students will choose one factor that can affect the rate at which a solute will dissolve into solution –amount of stirring, temperature, or particle size, and will design a procedure that can be used to determine how it will affect rate of solution. Students will identify one of the factors above as the independent variable and will determine how it affects the solubility rate as supported by time required to dissolve the solute.

Filtered By

Subtopics: Solubility

Clear All Filters

    Available Filters

    Subtopic
    Type