Classroom Resources: Solutions
Filter by:
1 – 7 of 7 Classroom Resources
-
Chemistry Basics, Identifying an Unknown, Solubility, States of Matter, Melting Point, Phase Changes | High School
Simulation: Safety Data Sheets Mark as Favorite (9 Favorites)
Students learn about sections of a safety data sheet (SDS) and how the information can be used for safety purposes and for identifying unknowns. They will use the Physical and Chemical Properties section and particle diagrams to distinguish between substances with similar appearances in a variety of lab-based scenarios.
-
Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Concentration, Molarity, Net Ionic Equation, Nernst Equation | High School
Simulation: Galvanic/Voltaic Cells 2 Mark as Favorite (38 Favorites)
In this simulation, students can create a variety of standard and non-standard condition galvanic/voltaic cells. Students will choose the metal and solution for each half cell, as well as the concentration of those solutions. They can build concentration cells and other non-standard cells, record the cell potential from the voltmeter, and observe the corresponding oxidation and reduction half reactions.
-
Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Electrons, Electron Transfer, Anode, Cathode, Oxidation, Reduction, Concentration, Net Ionic Equation, Molarity, Nernst Equation | High School
Activity: Simulation Activity: Non-Standard Galvanic Cells Mark as Favorite (11 Favorites)
In this activity, students will use a simulation to create a variety of non-standard condition galvanic/voltaic cells. This simulation allows students to choose the metal and solution for each half cell, as well as the concentration of those solutions. Students will build concentration cells and other non-standard cells and record the cell potential from the voltmeter. They will compare the results of different data sets, write net ionic equations, and describe electron flow through a galvanic/voltaic cell from anode to cathode as well as the direction of migration of ions, anions towards the anode and cations towards the cathode.
-
Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation | High School
Activity: Simulation Activity: Galvanic/Voltaic Cells Mark as Favorite (41 Favorites)
In this activity, students will use a simulation to create a variety of galvanic/voltaic cells with different electrodes. They will record the cell potential from the voltmeter and will use their data to determine the reduction potential of each half reaction. Students will also identify anodes and cathodes, write half reaction equations and full chemical equations, and view what is happening in each half cell and the salt bridge on a molecular scale.
-
Galvanic Cells, Redox Reaction, Reduction Potentials, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation | High School
Simulation: Galvanic/Voltaic Cells Mark as Favorite (74 Favorites)
In this simulation, students select different metals and aqueous solutions to build a galvanic/voltaic cell that generates electrical energy and observe the corresponding oxidation and reduction half reactions.
-
Ionic Bonding, Naming Compounds, Molecular Formula, Ions, Ionic Radius, Solubility, Melting Point, Physical Properties | High School
Activity: Ionic Bonding Brackets Mark as Favorite (62 Favorites)
In this lesson, students will demonstrate their knowledge of ionic bond strength and its relationship to the properties of melting point and solubility using a “brackets” activity. After analyzing the ionic charge and radius to predict the strongest and weakest bond between four pairs of ionic substances, they will then determine which will be the least soluble.
-
Balancing Equations, Precipitate, Solubility Rules | High School
Animation: Net Ionic Equations Animation Mark as Favorite (66 Favorites)
This animation explores what happens in a precipitate reaction on the particulate level. Students will see why writing a net ionic equation accurately represents what happens in these scenarios. An example of diluting a soluble solid, mixing two aqueous reactants that yield aqueous products, and mixing two aqueous reactants that yield a precipitate are part of this animation. **This video has no audio**