Classroom Resources: Chemistry Basics
Filter by:
51 – 75 of 667 Classroom Resources
-
Calorimetry, Exothermic & Endothermic, Heat, Specific Heat, Temperature, Scientific Method, Graphing, Experimental Design | High School
Lab: Cool Science: Building and Testing a Model Radiator Mark as Favorite (22 Favorites)
In this lab students construct a model of a car radiator to investigate parameters that lead to efficient cooling. Students investigate multiple variables as they experiment with various radiator designs. This lesson focuses on thermochemistry calculations and engineering practices.
-
Indicators, Le Châtelier's Principle, Acid Base Reactions, Chemical Change, Chemical Change, Limiting Reactant, Reaction Rate, Observations, Chemical Change | High School
Demonstration: Milk of Magnesia Magic Mark as Favorite (100 Favorites)
In this demonstration, students will observe a color change in a milk of magnesia solution as vinegar is added.
-
Physical Properties, Intermolecular Forces, Identifying an Unknown, Experimental Design, Scientific Method, Error Analysis, Graphing, Molecular Structure | High School
Lesson Plan: The Importance of Motor Oil Viscosity in Optimal Car Functioning Mark as Favorite (16 Favorites)
In this lesson students will determine how temperature affects viscosity and relate the data to the structure of motor oil and the optimal functioning of a car.
-
Isomers, Intermolecular Forces, Molecular Geometry, Molecular Structure, Intermolecular Forces, Boiling Point, Melting Point, Phase Changes, Isomers, Molecular Structure , Distillation, Separating Mixtures, Physical Properties | High School
Lesson Plan: Structural Isomers Mark as Favorite (17 Favorites)
In this activity, students will use models to explore structural isomers, and create explanations for the impact of structure on intermolecular forces (London dispersion) and physical properties (boiling point).
-
Indicators, Acid Base Reactions, Chemical Change, Observations | High School, Elementary School, Middle School
Demonstration: Secret Message Mark as Favorite (5 Favorites)
In this lesson, students will observe a hidden message while understanding simple acid/base chemistry and indicators.
-
Titrations, Concentration, Acid Base Reactions, Indicators, Molarity, Interdisciplinary | High School
Lab: Calculating Acid in Lemon-Lime Soda Mark as Favorite (55 Favorites)
In this lab, students will investigate the molarity of citric acid in a clear, lemon-lime flavored soft drink through titrations with 0.10M NaOH and an indicator.
-
Physical Properties, Observations, Experimental Design, Scientific Method | High School
Lesson Plan: Not Breaking Up is Hard to Do: the Properties of Glass Mark as Favorite (19 Favorites)
In this lesson students will learn about the properties of glass, and relate those properties to the new engineering design of glass in a car.
-
Beer's Law, Concentration, Physical Properties | High School
Lesson Plan: Introduction to Color Mark as Favorite (9 Favorites)
In this lesson students explore the properties related to color and how those properties vary with changes in concentration. This lesson introduces the use of a spectrophotometer to measure wavelength and absorbance in colored solutions as well as the use of Beer’s Law to determine an unknown concentration.
-
Intermolecular Forces, Mixtures, Intermolecular Forces, Colligative Properties, Freezing Point Depression, Solubility, Polarity, Phase Changes, Freezing Point, Density, Mixtures, Physical Properties | High School
Lesson Plan: Fuel Line Antifreeze Mark as Favorite (14 Favorites)
In this lesson students will explore the role of a gasoline additive, fuel line antifreeze (generally methanol or 2‑propanol), in reducing the potential of water to block fuel lines in freezing weather. Students will prepare test tube models of water-contaminated fuel tanks and explore the effect of adding different types of fuel line antifreeze. This lesson can be used to bolster concepts about miscibility, density, intermolecular forces, phase changes (freezing), and colligative properties (freezing point depression).
-
Distillation, Intermolecular Forces, Separating Mixtures, Observations, Physical Properties, Polarity, Cracking, Intermolecular Forces, Boiling Point, Balancing Equations | High School
Lesson Plan: Fractional Distillation of Crude Oil Mark as Favorite (27 Favorites)
In this lesson, students will be introduced to simple distillation while expanding their knowledge of intermolecular forces. Once a simple distillation has been accomplished in the lab, students will then research the various products of fractional distillation of crude oil and report on one of those products.
-
Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Net Ionic Equation, Concentration, Molarity, Precipitate, Solubility, Dimensional Analysis, Mole Concept, Observations, Graphing, Separating Mixtures, Identifying an Unknown | High School
Lab: White Lab Mark as Favorite (58 Favorites)
In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.
-
Intermolecular Forces, Solubility, Intermolecular Forces, Intramolecular Forces, Polarity, Lewis Structures, Molecular Structure, Solute & Solvent, Mixtures, Melting Point, Freezing Point, Boiling Point, Physical Properties, Graphing, Mixtures | High School
Lab: Physical Properties (High School) Mark as Favorite (31 Favorites)
In this lesson, students investigate how intermolecular forces effect physical properties by investigating substances’ melting points as well as solubility.
-
Intermolecular Forces, Intermolecular Forces, Physical Change | High School
Demonstration: Intermolecular Forces & Physical Properties Mark as Favorite (70 Favorites)
In this demonstration, students observe and compare the properties of surface tension, beading, evaporation, and miscibility for water and acetone.
-
Net Ionic Equation, Chemical Change, Solubility Rules, Solubility, Precipitate, Balancing Equations, Chemical Change | High School
Lab: Ions in Aqueous Solution Presentation Mark as Favorite (34 Favorites)
In this lab, students will mix ionic solutions to determine what combinations form precipitates.
-
Review, Culminating Project, Mixtures, Separating Mixtures, Beer's Law, Concentration, Redox Reaction, Half Reactions, pH, Titrations, Buffers, Indicators, Ionic Bonding, Covalent Bonding, Alloys, Percent Composition, Le Châtelier's Principle, Enthalpy, Calorimetry, Conductivity | High School
Lesson Plan: AP Chemistry Experimental Evidence Review Mark as Favorite (48 Favorites)
In this lesson, students will evaluate data from 16 simulated lab experiments that were designed to mirror the Recommended Labs from the College Board. Corresponding lab experiments and demonstration options have also been included for teacher reference.
-
Electron Affinity, Atomic Radius, Ionic Radius, Periodic Table, Ions, Atoms, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School
Activity: Periodic Trends II: Electron Affinity, Atomic Radius, & Ionic Radius Mark as Favorite (86 Favorites)
In this simulation, students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.
-
Review, Culminating Project | High School
Lesson Plan: AP Chemistry Big Idea Review Mark as Favorite (126 Favorites)
In this lesson, students will complete a review of all of the AP Chemistry Big Ideas and Learning Objectives using questions targeting each learning objective. This lesson is based on the AACT AP Chemistry Webinar series: What’s the Big Idea? Last Minute AP Chem Review and What’s the Big Idea? AP Chemistry Review Redux.
-
Intermolecular Forces, Polarity, Molecular Geometry, Molecular Structure, Molecular Structure , Physical Properties, Chemical Properties, Physical Change | High School
Lesson Plan: An Exploration of Intermolecular Forces Mark as Favorite (58 Favorites)
In this lesson students will explore intermolecular forces, and their associated effect on physical and chemical properties. Students will experiment with volatile liquids to investigate their predictions about intermolecular strength.
-
Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Electrons, Subatomic Particles, Ions, Model of the Atom, Atoms | High School
Activity: Periodic Trends I: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (178 Favorites)
In this simulation, students will investigate several periodic trends, including atomic radius, ionization energy and ionic radius. Through the use of this simulation students will have the opportunity to examine atomic data as well as visually compare and interact with select elements from the periodic table.
-
Percent Composition, Identifying an Unknown, Net Ionic Equation, Stoichiometry, Error Analysis, Molar Mass | High School
Lab: Analysis of Carbonate Compounds Mark as Favorite (59 Favorites)
In this lab, students calculate the molar masses of three unknown carbonate compounds by measuring the amount of product (CO2) produced by a reaction with hydrochloric acid.
-
Titrations, Limiting Reactant, Acid Base Reactions, Indicators, Chemical Change, Equivalence Point, Stoichiometry, Balancing Equations, Chemical Change, Graphing, Error Analysis, Chemical Change, Error Analysis, Measurements, Concentration, Molarity | High School
Lab: Acid-Base Mole Ratio Mark as Favorite (16 Favorites)
In this lab, students study several concepts, including acid-base reactions, limiting reactants, and stoichiometry, by observing the contained reaction of acetic acid (diluted vinegar) with sodium hydrogen carbonate (baking soda) in an unconventional, cost effective titration.
-
Atomic Radius, Electron Affinity, Ionization Energy, Periodic Table | High School
Activity: Periodic Trends Investigation Mark as Favorite (103 Favorites)
In this activity, students investigate trends in atomic radius, electron affinity, and ionization energy using an online interactive periodic table.
-
Classification of Reactions, Balancing Equations, Chemical Change, Conservation of Mass, Observations | High School
Lab: Classifying Reaction Types Mark as Favorite (105 Favorites)
In this lab, students will carry out seven reactions and classify their reaction types. They will make observations, predict products, and balance the equations that represent the chemical reactions that are occurring.
-
Electrostatic Forces, Subatomic Particles, Electrons, Electricity, Electrons, Graphing | High School
Lab: Electromagnetic Forces in the Atom Mark as Favorite (4 Favorites)
In this lab, students will better understand that opposite charges attract each other, and like charges repel.
-
Intermolecular Forces, Intermolecular Forces, Polarity, Molecular Motion, Molecular Motion, Physical Properties | High School
Activity: Simulation Activity: Comparing Attractive Forces Mark as Favorite (119 Favorites)
In this activity, students will use a simulation to investigate different types of intermolecular forces (London dispersion, induced dipole, and hydrogen bonding). In the analysis that follows the activity, they will relate IMFs (also including dipole-dipole) to physical properties (boiling point, solubility, and vapor pressure). This activity and simulation are appropriate for students in any level chemistry course.