Classroom Resources: Electrochemistry


Filter by:

  1. Sort by:


1 – 20 of 20 Classroom Resources

  • Electricity, Reduction, Redox Reaction, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Spontaneous Reactions , Electron Transfer, Electrons, Spontaneous vs. Non-spontaneous Reactions, Electrolytic Cells | High School

    Activity: Animation Activity: Galvanic Cells

    In this activity, students will use an animation to visualize how a galvanic cell works on a particulate level. Copper and zinc are the chemicals depicted in the spontaneous reaction. The transfer of electrons and involvement of the salt bridge are highlighted, in addition to the half reactions that take place for Zn (Zn -> Zn2+ + 2 e-) and Cu (2 e- + Cu2+ -> Cu).

  • Concentration, Molarity, Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Nernst Equation | High School

    Simulation: Galvanic/Voltaic Cells 2

    In this simulation, students can create a variety of standard and non-standard condition galvanic/voltaic cells. Students will choose the metal and solution for each half cell, as well as the concentration of those solutions. They can build concentration cells and other non-standard cells, record the cell potential from the voltmeter, and observe the corresponding oxidation and reduction half reactions.

  • Concentration, Molarity, Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Nernst Equation | High School

    Activity: Simulation Activity: Non-Standard Galvanic Cells

    In this activity, students will use a simulation to create a variety of non-standard condition galvanic/voltaic cells. This simulation allows students to choose the metal and solution for each half cell, as well as the concentration of those solutions. Students will build concentration cells and other non-standard cells and record the cell potential from the voltmeter. They will compare the results of different data sets, write net ionic equations, and describe electron flow through a galvanic/voltaic cell from anode to cathode as well as the direction of migration of ions, anions towards the anode and cations towards the cathode.

  • Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons | High School

    Activity: Simulation Activity: Galvanic/Voltaic Cells

    In this activity, students will use a simulation to create a variety of galvanic/voltaic cells with different electrodes. They will record the cell potential from the voltmeter and will use their data to determine the reduction potential of each half reaction. Students will also identify anodes and cathodes, write half reaction equations and full chemical equations, and view what is happening in each half cell and the salt bridge on a molecular scale.

  • Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons | High School

    Simulation: Galvanic/Voltaic Cells

    In this simulation, students select different metals and aqueous solutions to build a galvanic/voltaic cell that generates electrical energy and observe the corresponding oxidation and reduction half reactions.

  • Observations, Chemical Change, Balancing Equations, Activity Series, Chemical Change, Electron Transfer, Electrons, Predicting Products | High School

    Activity: Simulation Activity: Metals in Aqueous Solutions

    In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.

  • Observations, Chemical Change, Acid Base Reactions, Balancing Equations, Activity Series, Chemical Change, Electron Transfer, Electrons, Predicting Products | High School

    Simulation: Metals In Aqueous Solutions

    In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.

  • Observations, Chemical Change, Activity Series, Chemical Change, Predicting Products | High School

    Project: Wastewater Recovery

    In this project, students will analyze test results in order to design a procedure for recovering certain metals from wastewater using their knowledge of the Activity Series of Metals and single replacement reactions. Based on their analysis, students will create a proposal for presentation in an effort to recommend the best plan for reclaiming the metals from the wastewater.

  • Electricity, Polymers, Molecular Structure, Heat, Temperature, Molecular Geometry, Electronegativity | Middle School, High School

    Activity: Future of Paint Video Questions

    In this activity, students will watch a video and answer related questions about the fascinating and innovative scientific advancements of paint. During the video, Students will learn how the molecular components in paint are helping to evolve in the world around them.

  • Renewable Energy, Electricity, Redox Reaction, Galvanic Cells, Cathode, Anode | High School

    Activity: Hybrid and Electric Cars Video Questions

    In this activity, students will watch a video and answer related questions about the chemistry of batteries as they are used to power hybrid and electric cars. Students will learn about the basics of electricity, as well as how batteries function as a source of electricity.

  • Renewable Energy, Electricity, Galvanic Cells, Heat, Cathode, Anode | High School

    Activity: Alternative Fuels Video Questions

    In this activity, students will watch a video and answer related questions about the alternatives to petroleum-based fossil fuels such as biofuels and hydrogen fuel cells. Students will learn about the pros and cons of various fuel sources, as well as possibilities for the future of fuels.

  • Catalysts, Reduction, Combustion, Redox Reaction, Oxidation, Activation Energy | High School

    Activity: Catalytic Converters Video Questions

    In this activity, students will watch a video and answer related questions about the role of a catalytic converter and its corresponding chemical reactions within a vehicle. Students will learn about both oxidation and reduction reactions as well as the purpose of a catalyst.

  • Balancing Equations, Activity Series, Classification of Reactions, Solubility Rules | High School

    Simulation: Predicting Products

    In this simulation, students will reference an activity series and a solubility chart to accurately predict the products of single replacement and double replacement chemical reactions. Associated particle diagrams will be displayed to help students better comprehend the reaction at the particulate level. Students will also be asked to balance the chemical equation. The simulation is designed as a five question quiz for students to use multiple times.

  • Balancing Equations, Activity Series, Classification of Reactions, Solubility Rules | High School

    Activity: Simulation Activity: Predicting Products

    In this simulation, students will reference an activity series and a solubility chart to accurately predict the products of single replacement and double replacement chemical reactions. Associated particle diagrams will be displayed to help students better comprehend the reaction at the particulate level. Students will also be asked to balance the chemical equation. The simulation is designed as a five question quiz for students to use multiple times.

  • Electricity, Polymers, Molecular Structure, Heat, Temperature, Molecular Geometry, Electronegativity | Middle School, High School

    Video: The Future of Paint Video

    This video explores the fascinating and innovative scientific advancements of paint. Students will learn how the molecular components in paint are helping to evolve in the world around them. Futuristic paint is capable of replacing light switches, conducting electricity, and regulating temperature amongst other things!

  • Renewable Energy, Electricity, Galvanic Cells, Cathode, Anode | High School

    Video: Hybrid and Electric Cars Video

    This video explores the chemistry in the batteries that power hybrid and electric cars.

  • Catalysts, Reduction, Combustion, Redox Reaction, Activation Energy, Oxidation | Elementary School, Middle School, High School

    Video: Catalytic Converters Video

    This video investigates the role of a catalytic converter and its corresponding chemical reactions within a vehicle. Students will learn about both oxidation and reduction reactions and how they, in combination with a catalyst, can impact the molecules released in a car’s exhaust.

  • Renewable Energy, Electricity, Galvanic Cells, Heat, Cathode, Anode | Elementary School, Middle School, High School

    Video: Alternative Fuels Video

    This video analyzes alternatives to petroleum based fossil fuels, such as biofuels and hydrogen fuel cells.

  • Reduction, Redox Reaction, Oxidation, Half Reactions, Cathode, Anode | High School

    Activity: What Powers Your World?

    In this activity, students will assess the battery power sources for electronic devices they use each day, and then relate the information to their study of oxidation-reduction reactions and electrochemistry.

  • Electricity, Reduction, Oxidation, Half Reactions, Cathode, Anode, Spontaneous Reactions , Electron Transfer | Middle School, High School

    Animation: Galvanic Cell Animation

    In this animation, students will visualize electrons traveling through a galvanic cell. Copper and zinc are the chemicals depicted in the spontaneous reaction and the importance of the salt bridge is highlighted. **This video has no audio**

Filtered By

Type: Activity Animation Project Simulation Video

Grade Level: High School

Clear All Filters

Available Filters