# Classroom Resources: Energy & Thermodynamics

1. ## Sort by:

26 – 50 of 143 Classroom Resources

• Review, Culminating Project, Mixtures, Separating Mixtures, Beer's Law, Concentration, Conductivity, Redox Reaction, Half Reactions, pH, Titrations, Buffers, Indicators, Ionic Bonding, Covalent Bonding, Alloys, Percent Composition, Le Châtelier's Principle, Enthalpy, Calorimetry | High School

### Access is an AACT member benefit. Lesson Plan: AP Chemistry Experimental Evidence Review

In this lesson, students will evaluate data from 16 simulated lab experiments that were designed to mirror the Recommended Labs from the College Board. Corresponding lab experiments and demonstration options have also been included for teacher reference.

• Equilibrium Constants, Le Châtelier's Principle, Gibb's Free Energy , Enthalpy, Entropy, Solubility | High School

### Access is an AACT member benefit. Lesson Plan: Relationship Between Free Energy and the Equilibrium Constant

In this lesson, students will explore the relationships between solubility and Keq (specifically Ksp), as well as Keq and ΔG°. First, a guided inquiry activity will introduce the relationship between standard free energy and equilibrium constant with the equation ΔG° = -RTlnKeq. Then data collection regarding solubility of potassium nitrate at various temperatures will lead to the calculation of Ksp and ΔGo for the dissolution reaction at those temperatures. Students will manipulate the equations ΔG° = -RTlnKeq and ΔG° = ΔH° - TΔS° to derive a linear relationship between 1/T and lnKeq, which will then be graphed to determine values for ΔH° and ΔS°.

• Heat, Specific Heat, Phase Changes, Intermolecular Forces | High School

### Access is an AACT member benefit. Activity: "It's a Phase" Puzzles

In this activity, students will complete either a crossword puzzle or a word search puzzle for common vocabulary terms related to the topics of phase changes and heat transfer. This activity provides an opportunity for students to increase their familiarity with the terms that they will be expected to use when learning about thermochemistry.

• Hess's Law, Calorimetry, Heat, Enthalpy, Error Analysis | High School

### Access is an AACT member benefit. Lab: Utilizing Hess's Law

In this lab, students will use a coffee cup calorimeter to collect data that will allow them to calculate ∆H for two reactions. The first reaction, between sodium bicarbonate and hydrochloric acid is endothermic. The second, between sodium carbonate and hydrochloric pressure, is exothermic. They will then use their experimental values and Hess’s Law to determine ∆H for the decomposition of sodium bicarbonate, compare their calculated value to the theoretical value, and calculate the percent error. This resource includes a prelab presentation and sample calculations.

• Concentration, Graphing, Electromagnetic Spectrum | High School

### Access is an AACT member benefit. Lesson Plan: Determining the Time of Death

In this lesson, students will perform a flame test on a sample of vitreous humor (liquid found in the eyeball) in a forensic investigation. They will determine which element from the sample is used to determine the time of death. Then they will engineer a simple spectrophotometer to quantify that element. Evaluating a fake sample of vitreous humor in their spectrophotometer will help them determine the time of death for a hypothetical cadaver.

• Atomic Spectra, Electrons, Electromagnetic Spectrum | High School

### Access is an AACT member benefit. Lesson Plan: Atomic Spectra for At-Home Learning

In this lesson, students first observe a flame test demonstration conducted by their teacher, and hypothesize about the identity of an unknown sample. Then they make connections in their understanding as they are tasked with building a prism, researching about wavelengths, and creating a model of electron energy levels.

• Atomic Mass, Subatomic Particles, Law of Conservation of Energy, Conservation of Mass | High School

### Access is an AACT member benefit. Activity: Building a Nuclide

In this activity, students will construct a model of a nuclide and use this model to investigate why the mass of the nuclide is less than the summative mass of the individual nucleons (protons and neutrons). Additionally, the constructed nuclide will be used to help students conceptualize and differentiate between key lesson terminology (mass defect, strong nuclear force, and nuclear binding energy).

• Specific Heat, Heat, Temperature | High School

### Simulation: Understanding Specific Heat Capacity

In this simulation, students will play the role of engineer. They will calculate the specific heat capacity of various materials to determine which ones meet stated criteria and then perform a cost analysis to determine which material to use.

• Specific Heat, Heat, Temperature, Experimental Design | Middle School, High School

### Access is an AACT member benefit. Activity: Simulation Activity: Understanding Specific Heat

In this simulation, students will play the role of engineer in deciding which materials are the best candidates for a building project. They will calculate the specific heat capacity of various building materials to determine which ones meet the criteria for building an energy efficient home. Students will also do a cost analysis to determine which material to use in their building project. On the student activity sheet, they will answer additional conceptual and numerical questions related to specific heat capacity.

• Chemical Change, Reaction Rate, Chemical Change, Exothermic & Endothermic, Heat, Temperature | High School

### Access is an AACT member benefit. Lab: A Comparison of Two Chemical Reactions

In this lab, students will perform two chemical reactions, one between acetic acid and sodium bicarbonate and the other between the citric acid and the sodium bicarbonate in an Alka-Seltzer tablet when dissolved in water. Both reactions will produce gas while reacting in a closed plastic sandwich bag, causing it to inflate. Students will observe the reactions and analyze the results in order to understand indicators of chemical changes, heat flow, and factors that affect reaction rates

• Enthalpy, Entropy, Gibb's Free Energy | High School

### Access is an AACT member benefit. Lab: Thermodynamics Escape Room

In this lab, students are presented with an escape room scenario that challenges them to complete three tasks in order to escape from an old, mysterious Gothic house. Students are given access to a small assortment of chemicals, and standard lab equipment. They must determine which chemicals and equipment will help them to light a tap light without touching it, free a key from a block of ice without using a conventional heat source, and free a lock that is buried in a pile of glue.

• Electromagnetic Spectrum, Interdisciplinary | Elementary School, Middle School, High School

### Access is an AACT member benefit. Activity: Animation Activity: Electromagnetic Spectrum

In this activity, students will view an animation that explores the electromagnetic spectrum, with a focus on the visible spectrum. The animation addresses the relationship between color, wavelength, frequency, and energy of light waves, as well as how an object absorbs and reflects certain wavelengths of light to contribute to the color we perceive.

• Electromagnetic Spectrum, Interdisciplinary | Middle School, High School, Elementary School

### Access is an AACT member benefit. Animation: The Electromagnetic Spectrum Animation

This animation explores the electromagnetic spectrum, with a focus on the visible spectrum. It addresses the relationship between color, wavelength, frequency, and energy of light waves, as well as how an object absorbs and reflects certain wavelengths of light to contribute to the color we perceive. This animation was featured in the May 2020 issue of Chemistry Solutions. **This video has no spoken audio**

• Heat, Temperature, Exothermic & Endothermic | Middle School, High School

### Access is an AACT member benefit. Lab: Energy Transfer Investigation

In this lab, students will experience several examples of energy transfer. They will analyze their observations and interpret their results in an attempt to explain why each transfer took place.

• Electromagnetic Spectrum, Identifying an Unknown | Middle School, High School

### Access is an AACT member benefit. Activity: Color Matching Paint Video Questions

In this activity, students will watch a video and answer related questions about how technology, specifically focusing on spectrophotometry, can be used for paint matching. During the video, students will learn how the spectrophotometer interacts with the spectrum of visible light in order to match or reproduce specific paint colors.

• Molecular Structure, Molecular Geometry, Polymers, Electronegativity, Heat, Temperature, Electricity | Middle School, High School

### Access is an AACT member benefit. Activity: Future of Paint Video Questions

In this activity, students will watch a video and answer related questions about the fascinating and innovative scientific advancements of paint. During the video, Students will learn how the molecular components in paint are helping to evolve in the world around them.

• Electromagnetic Spectrum, Molecular Structure, Mixtures | Middle School, High School

### Access is an AACT member benefit. Activity: What are Pigments? Video Questions

In this activity, students will watch a video and answer related questions about the chemistry of pigment molecules and how they are used to give paints their specific color. During the video, students will learn about the importance of a pigment’s molecular structure, how they are physically suspended to create a paint color, as well as how they interact with light.

• Mixtures, Solute & Solvent, Intermolecular Forces, Intermolecular Forces, Molecular Structure, Polymers, Electromagnetic Spectrum | Middle School, High School

### Access is an AACT member benefit. Activity: What is Paint? Video Questions

In this activity, students will watch a video and answer related questions about the composition of paint. During the video, students will learn about the differences between three common paint types, water colors, oil-based and acrylic paint as well as the chemistry of each.

• Electricity, Anode, Cathode, Galvanic Cells, Redox Reaction, Renewable Energy | High School

### Access is an AACT member benefit. Activity: Hybrid and Electric Cars Video Questions

In this activity, students will watch a video and answer related questions about the chemistry of batteries as they are used to power hybrid and electric cars. Students will learn about the basics of electricity, as well as how batteries function as a source of electricity.

• Electricity, Anode, Cathode, Galvanic Cells, Heat, Renewable Energy | High School

### Access is an AACT member benefit. Activity: Alternative Fuels Video Questions

In this activity, students will watch a video and answer related questions about the alternatives to petroleum-based fossil fuels such as biofuels and hydrogen fuel cells. Students will learn about the pros and cons of various fuel sources, as well as possibilities for the future of fuels.

• Introduction, Interdisciplinary, History, Heat, Renewable Energy, Polymers, Molecular Structure | Middle School, High School

### Video: Frontiers of Chemistry

This video explores new scientific developments that were made possible by the application of fundamental chemistry concepts. Students will learn about exciting advances in science and technology focused on three main topics: Solar Cells, 3D Printing and Micro Machines.

• Heat of Combustion, Heat, Exothermic & Endothermic, Combustion, Polymers, Molecular Structure | High School

### Access is an AACT member benefit. Activity: The Internal Combustion Engine Video Questions

In this activity, students will watch a video and answer related questions about the mechanical and chemical processed used in the internal combustion engine. Additionally they will learn about reactions and fuel types as well as the history and evolution of the combustion engine.

• Radiation, Electromagnetic Spectrum, Heat, Temperature, Experimental Design, Graphing, Interdisciplinary | Middle School, High School

### Access is an AACT member benefit. Lesson Plan: The Ozone Layer

In this lesson, students will develop an explanation for the consequences of ozone depletion on Earth by planning and carrying out an investigation. Students will use analysis and interpretation of data to develop a model to explain the cause and effect of Ozone depletion on the planet Earth.

• Renewable Energy, Culminating Project | High School

### Access is an AACT member benefit. Project: Sustainable Energy Evaluation

In this project, students will develop a presentation to compare the pros and cons of a sustainable resource. The explanation will involve researching the cost and benefits of the resource and analyzing if the resource should continue to be used.

• Calorimetry, Specific Heat, Heat | High School

### Access is an AACT member benefit. Activity: Heat Flow Process Engineering Optimization

In this activity, students will use a team-based approach to solve the problem of upscaling a chemical process from lab scale to production scale for a hypothetical reaction. The project involves thermochemistry concepts of heat and calorimetry, along with conversion factors. The students will use a team-oriented problem-solving approach. The emphasis is placed on data driven decision making.