Classroom Resources: Solutions
Filter by:
1 – 21 of 21 Classroom Resources

Solubility, Net Ionic Equation, Precipitate  High School
Activity: Corrosion and Precipitation Mark as Favorite (5 Favorites)
In this activity, students will investigate concepts of corrosion and redox as they consider the Flint, Michigan Water Crisis and the question, “How did the lead get into Flint’s drinking water?” As they explore these topics while also considering solubility, students will begin to understand how corrosion control is used to prevent lead from contaminating a drinking water supply.

Net Ionic Equation, Precipitate, Solubility, Solubility Rules, Balancing Equations  High School
Activity: Animation Activity: Net Ionic Equations Mark as Favorite (10 Favorites)
In this activity, students will view an animation that explores what happens in a precipitate reaction on the particulate level. They will see why writing a net ionic equation accurately represents what happens in these scenarios. An example of diluting a soluble solid, mixing two aqueous reactants that yield aqueous products, and mixing two aqueous reactants that yield a precipitate are part of this animation.

Identifying an Unknown, Experimental Design, Scientific Method, Chemical Change, Net Ionic Equation, Precipitate, Solubility, Solubility Rules, Balancing Equations, Predicting Products, Chemical Change  High School
Lab: Mislabeled Mess! Mark as Favorite (27 Favorites)
In this lab, students will identify 3 unknown acids by using the solubility rules. They will be given a list of materials and will design their own procedures for identifying the unknowns. For each combination of reactants, they will predict whether a product forms and, if it does, write complete and net ionic equations for those reactions.

Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Concentration, Molarity, Net Ionic Equation, Nernst Equation  High School
Simulation: Galvanic/Voltaic Cells 2 Mark as Favorite (32 Favorites)
In this simulation, students can create a variety of standard and nonstandard condition galvanic/voltaic cells. Students will choose the metal and solution for each half cell, as well as the concentration of those solutions. They can build concentration cells and other nonstandard cells, record the cell potential from the voltmeter, and observe the corresponding oxidation and reduction half reactions.

Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Electrons, Electron Transfer, Anode, Cathode, Oxidation, Reduction, Concentration, Net Ionic Equation, Molarity, Nernst Equation  High School
Activity: Simulation Activity: NonStandard Galvanic Cells Mark as Favorite (8 Favorites)
In this activity, students will use a simulation to create a variety of nonstandard condition galvanic/voltaic cells. This simulation allows students to choose the metal and solution for each half cell, as well as the concentration of those solutions. Students will build concentration cells and other nonstandard cells and record the cell potential from the voltmeter. They will compare the results of different data sets, write net ionic equations, and describe electron flow through a galvanic/voltaic cell from anode to cathode as well as the direction of migration of ions, anions towards the anode and cations towards the cathode.

Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation  High School
Activity: Simulation Activity: Galvanic/Voltaic Cells Mark as Favorite (31 Favorites)
In this activity, students will use a simulation to create a variety of galvanic/voltaic cells with different electrodes. They will record the cell potential from the voltmeter and will use their data to determine the reduction potential of each half reaction. Students will also identify anodes and cathodes, write half reaction equations and full chemical equations, and view what is happening in each half cell and the salt bridge on a molecular scale.

Galvanic Cells, Redox Reaction, Reduction Potentials, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation  High School
Simulation: Galvanic/Voltaic Cells Mark as Favorite (61 Favorites)
In this simulation, students select different metals and aqueous solutions to build a galvanic/voltaic cell that generates electrical energy and observe the corresponding oxidation and reduction half reactions.

Acid & Base Theories, Strong vs Weak, Indicators, Titrations, Buffers, Concentration, Molarity, Net Ionic Equation  High School
Lesson Plan: Acids and Bases Unit Plan Mark as Favorite (55 Favorites)
The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the topic of acids and bases to your students.

Solubility, Solute & Solvent, Molarity, Solubility Rules, Net Ionic Equation, Intermolecular Forces, Beer's Law  High School
Lesson Plan: Aqueous Solutions Unit Plan Mark as Favorite (54 Favorites)
The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach Aqueous Solutions to your students.

Classification of Reactions, Chemical Change, Solubility Rules, Net Ionic Equation  High School
Demonstration: Precipitation Reaction Mark as Favorite (43 Favorites)
In this demonstration, students will observe a precipitation reaction. Students will create several particle diagrams in order to describe and fully understand what is occurring on the atomic level during the chemical reaction.

Classification of Reactions, Balancing Equations, Stoichiometry, Redox Reaction, Net Ionic Equation  High School
Lab: Inquiry Redox Investigation Mark as Favorite (35 Favorites)
In this lab, students perform a simple redox reaction using an iron nail and copper(II) chloride solution. They will consider both quantitative and qualitative data collected during the reaction in order to attempt to explain what happened. Students will also create particle diagrams and determine mole ratios of various species in the reaction.

Salts, Indicators, Strong vs Weak, Net Ionic Equation  High School
Lab: Hydrolysis of Salts Mark as Favorite (27 Favorites)
In this lab, students will observe the hydrolysis of several salt samples. They will first predict which solutions are acidic, basic or neutral, and then discover the pH of each through the use of indicators. Students will share and compile their experimental results, as well as have an opportunity to determine the netionic equations for each reaction.

Solubility Rules, Classification of Reactions, Precipitate, Net Ionic Equation  High School
Lesson Plan: Do it Yourself Color! Mark as Favorite (23 Favorites)
In this lesson students will use solubility rules to predict whether the product of a double displacement or metathesis reaction will produce a precipitate. Students will then investigate a series of reactions to verify solubility rules. Finally students will determine the identity of unknown solutions based on experimental evidence.

Ionic Bonding, Net Ionic Equation  High School
Lab: The pH of Salts Mark as Favorite (17 Favorites)
In this lab, students will determine whether an aqueous solution is acidic, basic, or neutral. Students will write net ionic equations for the hydrolysis of a solution.

Activity Series, Chemical Change, Oxidation, Reduction, Net Ionic Equation, Redox Reaction, Observations  High School
Lab: Fine Art of Redox Mark as Favorite (24 Favorites)
In this lab, students will practice writing and balancing redox reactions and use the activity series to verify the outcome of a chemical reaction.

Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Net Ionic Equation, Concentration, Molarity, Precipitate, Solubility, Dimensional Analysis, Mole Concept, Observations, Graphing, Separating Mixtures, Identifying an Unknown  High School
Lab: White Lab Mark as Favorite (48 Favorites)
In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.

Net Ionic Equation, Chemical Change, Solubility Rules, Solubility, Precipitate, Balancing Equations, Chemical Change  High School
Lab: Ions in Aqueous Solution Presentation Mark as Favorite (29 Favorites)
In this lab, students will mix ionic solutions to determine what combinations form precipitates.

Heat of Neutralization, Acid Base Reactions, Exothermic & Endothermic, Temperature, Specific Heat, Calorimetry, Bond Energy, Net Ionic Equation, Molarity, Dimensional Analysis, Measurements, Mole Concept  High School
Lab: Heat of Neutralization Mark as Favorite (10 Favorites)
In this lab, students carry out an acidbase reaction to calculate the heat of neutralization based on experimental data. This lab will reinforce the concepts of exothermic and endothermic processes, system and surroundings, and heat of reaction (specifically, neutralization).

Galvanic Cells, Reduction, Oxidation, Half Reactions, Cathode, Anode, Redox Reaction, Electrons, Electron Transfer, Net Ionic Equation, Error Analysis  High School
Lab: FourWay Galvanic Cell Mark as Favorite (25 Favorites)
In this lab, students will build a simple galvanic cell to measure cell potential and will compare their data to theoretical calculations. Students will become more familiar with cells during this opportunity to investigate and compare numerous electrochemistry reactions.

Limiting Reactant, Concentration, Net Ionic Equation, Stoichiometry, Balancing Equations, Precipitate, Mole Concept, Dimensional Analysis  High School
Lab: Finding CO_{2} Mass in your Breath Mark as Favorite (36 Favorites)
In this lab, students will measure how much carbon dioxide they exhale by reacting their exhaled breath with limewater (calcium hydroxide solution). Students will practice writing balanced equations and completing masstomass stoichiometric calculations.

Percent Composition, Identifying an Unknown, Net Ionic Equation, Stoichiometry, Error Analysis, Molar Mass  High School
Lab: Analysis of Carbonate Compounds Mark as Favorite (52 Favorites)
In this lab, students calculate the molar masses of three unknown carbonate compounds by measuring the amount of product (CO2) produced by a reaction with hydrochloric acid.