Classroom Resources: Solutions

Filter by:

  1. Sort by:

1 – 25 of 34 Classroom Resources

  • Acid & Base Theories, Strong vs Weak, Indicators, Titrations, Buffers, Concentration, Molarity, Net Ionic Equation | High School

    Lesson Plan: Acids and Bases Unit Plan Mark as Favorite (60 Favorites)

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the topic of acids and bases to your students.

  • Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Electrons, Electron Transfer, Anode, Cathode, Oxidation, Reduction, Concentration, Net Ionic Equation, Molarity, Nernst Equation | High School

    Activity: Simulation Activity: Non-Standard Galvanic Cells Mark as Favorite (11 Favorites)

    In this activity, students will use a simulation to create a variety of non-standard condition galvanic/voltaic cells. This simulation allows students to choose the metal and solution for each half cell, as well as the concentration of those solutions. Students will build concentration cells and other non-standard cells and record the cell potential from the voltmeter. They will compare the results of different data sets, write net ionic equations, and describe electron flow through a galvanic/voltaic cell from anode to cathode as well as the direction of migration of ions, anions towards the anode and cations towards the cathode.

  • Titrations, Acid Base Reactions, Indicators, Chemical Change, Stoichiometry, Balancing Equations, Concentration, Molarity, Error Analysis, Dimensional Analysis, Measurements | High School

    Access is an AACT member benefit. Lab: Vinegar Quality Control Mark as Favorite (45 Favorites)

    In this lab, students will perform a titration of a vinegar sample to determine if it is it close to the concentration claimed on the bottle.

  • Titrations, Equivalence Point, Indicators, Acid Base Reactions, Chemical Change, Salts, Molarity, Reaction Rate, Order of Reaction , Error Analysis | High School

    Access is an AACT member benefit. Lab: Titration Lab with Kinetics Mark as Favorite (15 Favorites)

    In this lab, students calculate the molarity of an unknown using a titration and also by solving for a dilution.

  • Titrations, Concentration, Indicators, Acid Base Reactions, Equivalence Point, Molarity | High School

    Access is an AACT member benefit. Lab: Lethal Dose Mark as Favorite (37 Favorites)

    In this lab, students will perform several titrations to calculate the concentration of potentially “lethal” medicycloprophic solutions.

  • Calorimetry, Exothermic & Endothermic, Temperature, Stoichiometry, Limiting Reactant, Chemical Change, Molarity, Enthalpy, Heat, Concentration, Experimental Design, Scientific Method | High School

    Lab: Less Than Zero Mark as Favorite (36 Favorites)

    In this lab, students will investigate the endothermic reaction between baking soda and HCl. Students will consider stoichiometric ratios, molar concentrations, reaction scale, and calorimetry. The lab starts with a scripted reaction that uses given molar ratios, a glass beaker, and 2-M HCl. They will witness a temperature drop of about 5 to 8 C. Students then adjust the experiment so they can achieve a temperature drop of more than 20 C.

  • Heat of Neutralization, Acid Base Reactions, Exothermic & Endothermic, Temperature, Specific Heat, Calorimetry, Bond Energy, Net Ionic Equation, Molarity, Dimensional Analysis, Measurements, Mole Concept | High School

    Access is an AACT member benefit. Lab: Heat of Neutralization Mark as Favorite (6 Favorites)

    In this lab, students carry out an acid-base reaction to calculate the heat of neutralization based on experimental data. This lab will reinforce the concepts of exothermic and endothermic processes, system and surroundings, and heat of reaction (specifically, neutralization).

  • Limiting Reactant, Acid Base Reactions, Stoichiometry, Indicators, pH, Dimensional Analysis, Mole Concept, Measurements, Concentration, Molarity | High School

    Access is an AACT member benefit. Lab: Acid/Base Stoichiometry Mark as Favorite (13 Favorites)

    In this lab, students experience a limiting reactant and can physically see the difference in amounts of product generated. They also see which reactant is in excess.

  • Strong vs Weak, Titrations, Acid Base Reactions, Equivalence Point, Indicators, pH, Concentration, Molarity, Measurements | High School

    Access is an AACT member benefit. Lab: Acid Base Reactions Mark as Favorite (7 Favorites)

    In this lab, students will witness a reaction between an acid and base. One will be strong, and the other may be weak or strong--it's up to them to determine.

  • Titrations, Indicators, Molarity, Concentration | High School

    Demonstration: How to Perform a Titration Mark as Favorite (38 Favorites)

    In this demonstration, the teacher will show how a titration is set-up and performed. Also, the teacher will utilize different indicators to show how they work and why they are necessary. At the end of the demonstration, the teacher will also explain how to calculate the molarity of the unknown substance.

  • Chemical Change, Limiting Reactant, Classification of Reactions, Percent Yield, Stoichiometry, Concentration, Molarity, Mole Concept, Dimensional Analysis | High School

    Access is an AACT member benefit. Demonstration: First Day Review Mark as Favorite (20 Favorites)

    In this demonstration, students see evidence of a chemical reaction.

  • Titrations, Concentration, Acid Base Reactions, Indicators, Molarity, Interdisciplinary | High School

    Access is an AACT member benefit. Lab: Calculating Acid in Lemon-Lime Soda Mark as Favorite (55 Favorites)

    In this lab, students will investigate the molarity of citric acid in a clear, lemon-lime flavored soft drink through titrations with 0.10M NaOH and an indicator.

  • Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Net Ionic Equation, Concentration, Molarity, Precipitate, Solubility, Dimensional Analysis, Mole Concept, Observations, Graphing, Separating Mixtures, Identifying an Unknown | High School

    Access is an AACT member benefit. Lab: White Lab Mark as Favorite (55 Favorites)

    In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.

  • Beer's Law, Molarity, Concentration | High School

    Access is an AACT member benefit. Lab: Beer's Law Discovered Mark as Favorite (32 Favorites)

    In this laboratory investigation, students will explore the concepts of light absorption, transmittance, and the relationship between absorbance, path length, and concentration of solution.

  • Titrations, Limiting Reactant, Acid Base Reactions, Indicators, Chemical Change, Equivalence Point, Stoichiometry, Balancing Equations, Chemical Change, Graphing, Error Analysis, Chemical Change, Error Analysis, Measurements, Concentration, Molarity | High School

    Access is an AACT member benefit. Lab: Acid-Base Mole Ratio Mark as Favorite (15 Favorites)

    In this lab, students study several concepts, including acid-base reactions, limiting reactants, and stoichiometry, by observing the contained reaction of acetic acid (diluted vinegar) with sodium hydrogen carbonate (baking soda) in an unconventional, cost effective titration.

  • Titrations, Acid Base Reactions, Identifying an Unknown, Molarity | High School

    Access is an AACT member benefit. Lesson Plan: Investigating a Suspicious Drowning with Titrations Mark as Favorite (54 Favorites)

    In this lesson, students take on the role of a forensic chemist who is tasked with investigating a suspicious drowning incident. Students will conduct a series of titrations on an evidence sample of water collected from the victim's lungs as well as on several water samples from local water sources (lakes, rivers, wells, etc.) Based on their findings, they will determine where the victim actually drowned.

  • Solubility, Solute & Solvent, Molarity, Solubility Rules, Net Ionic Equation, Intermolecular Forces, Beer's Law | High School

    Lesson Plan: Aqueous Solutions Unit Plan Mark as Favorite (60 Favorites)

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach Aqueous Solutions to your students.

  • Molarity, Concentration, Solute & Solvent | High School

    Activity: Simulation Activity: Preparing Solutions Mark as Favorite (34 Favorites)

    In this simulation, students will complete a calculation in order to determine the value of an unknown variable related to a described solution and then they will observe an animation of the solution being prepared. The calculation will require the student to determine either the molarity of solution, volume of solution, or mass of solute needed. Additionally the associated particle diagram for the solution will be displayed to help students better visualize the solution at the particulate level. Finally, students will gain familiarity with the proper lab techniques for preparing a solution as they are lead through a step-by-step animated process demonstrating this procedure. The simulation is designed as a five question quiz for students to use multiple times.

  • Solubility, Solubility Rules, Concentration, Molarity, Reactions & Stoichiometry, Stoichiometry | High School

    Access is an AACT member benefit. Lab: The Gravimetric Analysis of Lead in Contaminated Water Mark as Favorite (39 Favorites)

    In this lab, students will perform a gravimetric analysis of a simulated water sample contaminated with “lead”. Using their knowledge of solubility and chemical reactions they will precipitate the “lead” from the water sample. Then from the data collected, they will calculate the concentration of “lead” in their samples and compare that value to those found in water samples from the Flint, Michigan water crisis.

  • Concentration, Solubility, Molarity, Chemistry Basics, Graphing | High School

    Access is an AACT member benefit. Activity: Concentration and Solubility Mark as Favorite (28 Favorites)

    In this activity, students will use news articles and EPA publications to compare Federal drinking water regulations to the concentrations found in Flint, Michigan. Students are introduced to the unit parts per billion (ppb) and compare it both conceptually and mathematically to molarity. As a group, students use data to compare the solubility of various lead salts and perform solubility calculations.

  • Molarity, Concentration, Molality | High School

    Access is an AACT member benefit. Activity: Particle Level Molarity Mark as Favorite (93 Favorites)

    In this activity, students are introduced to molarity at the particle level. Students will activate their prior knowledge by demonstrating their understanding of concentration by preparing several Kool-Aid drinks, and then applying that information at the particle level to various models.

  • Concentration, Precipitate, Molarity, Molality, Conductivity, Colligative Properties, Boiling Point Elevation, Freezing Point Depression, Distillation, Culminating Project, Graphing, Accuracy, Error Analysis, Interdisciplinary, Mixtures, pH, Buffers, Boiling Point, Freezing Point, Phase Changes | High School

    Access is an AACT member benefit. Lesson Plan: Investigating Sea Water Mark as Favorite (27 Favorites)

    In this lesson, students will consider their water footprint and means to obtain fresh water from seawater using a solar still. To understand the differences between fresh water and seawater, students will determine the composition of artificial seawater by using qualitative analysis to test for different ions in solution and calculate the molarity of different salts used in the recipe. Students will observe the effects of solutes in aqueous solutions by measuring conductivity and the freezing and boiling points of seawater and deionized water and determine total dissolved solids. In addition, students explore the buffering ability of seawater and the effect of carbon dioxide on its pH.

  • Molarity, Concentration, Solute & Solvent | High School

    Simulation: Preparing Solutions Mark as Favorite (83 Favorites)

    In this simulation, students will complete a calculation in order to determine either the molarity of solution, volume of solution, or mass of solute needed. Additionally the associated particle diagram for the solution will be displayed to help students better visualize the solution at the particulate level. Finally, students will gain familiarity with the proper lab techniques for preparing a solution as they are lead through a step-by-step animated process demonstrating this procedure.

  • Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Concentration, Molarity, Net Ionic Equation, Nernst Equation | High School

    Simulation: Galvanic/Voltaic Cells 2 Mark as Favorite (42 Favorites)

    In this simulation, students can create a variety of standard and non-standard condition galvanic/voltaic cells. Students will choose the metal and solution for each half cell, as well as the concentration of those solutions. They can build concentration cells and other non-standard cells, record the cell potential from the voltmeter, and observe the corresponding oxidation and reduction half reactions.

  • Significant Figures, Measurements, Beer's Law, Concentration, Molarity | High School

    Access is an AACT member benefit. Lab: Investigating Shades of Blue Mark as Favorite (12 Favorites)

    In this lab investigation, students will create a copper(II) nitrate solution. Each group will be given a different measurement device in order to see how the accuracy of the preparation of the solution is affected by the limitations of the measurement device. The goal is for students to have a true understanding of why significant figures are important.

Filtered By

Subtopics: Molarity

Clear All Filters

    Available Filters

    Subtopic
    Type