Classroom Resources: Solutions


Filter by:

  1. Sort by:


1 – 18 of 18 Classroom Resources

  • Concentration, Molarity, Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Nernst Equation | High School

    Simulation: Galvanic/Voltaic Cells 2

    In this simulation, students can create a variety of standard and non-standard condition galvanic/voltaic cells. Students will choose the metal and solution for each half cell, as well as the concentration of those solutions. They can build concentration cells and other non-standard cells, record the cell potential from the voltmeter, and observe the corresponding oxidation and reduction half reactions.

  • Concentration, Molarity, Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Nernst Equation | High School

    Activity: Non-Standard Galvanic Cells

    In this activity, students will use a simulation to create a variety of non-standard condition galvanic/voltaic cells. This simulation allows students to choose the metal and solution for each half cell, as well as the concentration of those solutions. Students will build concentration cells and other non-standard cells and record the cell potential from the voltmeter. They will compare the results of different data sets, write net ionic equations, and describe electron flow through a galvanic/voltaic cell from anode to cathode as well as the direction of migration of ions, anions towards the anode and cations towards the cathode.

  • Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons | High School

    Activity: Simulation Activity: Galvanic/Voltaic Cells

    In this activity, students will use a simulation to create a variety of galvanic/voltaic cells with different electrodes. They will record the cell potential from the voltmeter and will use their data to determine the reduction potential of each half reaction. Students will also identify anodes and cathodes, write half reaction equations and full chemical equations, and view what is happening in each half cell and the salt bridge on a molecular scale.

  • Net Ionic Equation, Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons | High School

    Simulation: Galvanic/Voltaic Cells

    In this simulation, students select different metals and aqueous solutions to build a galvanic/voltaic cell that generates electrical energy and observe the corresponding oxidation and reduction half reactions.

  • Concentration, Molarity, Net Ionic Equation, Titrations, Indicators, Strong vs Weak, Acid & Base Theories, Buffers | High School

    Lesson Plan: Acids and Bases Unit Plan

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the topic of acids and bases to your students.

  • Solubility, Solute & Solvent, Intermolecular Forces, Molarity, Net Ionic Equation, Solubility Rules, Beer's Law | High School

    Lesson Plan: Aqueous Solutions Unit Plan

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach Aqueous Solutions to your students.

  • Net Ionic Equation, Balancing Equations, Stoichiometry, Classification of Reactions, Redox Reaction | High School

    Lab: Inquiry Redox Investigation

    In this lab, students perform a simple redox reaction using an iron nail and copper(II) chloride solution. They will consider both quantitative and qualitative data collected during the reaction in order to attempt to explain what happened. Students will also create particle diagrams and determine mole ratios of various species in the reaction.

  • Net Ionic Equation, Classification of Reactions, Chemical Change, Solubility Rules | High School

    Demonstration: Precipitation Reaction

    In this demonstration, students will observe a precipitation reaction. Students will create several particle diagrams in order to describe and fully understand what is occurring on the atomic level during the chemical reaction.

  • Net Ionic Equation, Indicators, Strong vs Weak, Salts | High School

    Lab: Hydrolysis of Salts

    In this lab, students will observe the hydrolysis of several salt samples. They will first predict which solutions are acidic, basic or neutral, and then discover the pH of each through the use of indicators. Students will share and compile their experimental results, as well as have an opportunity to determine the net-ionic equations for each reaction.

  • Precipitate, Net Ionic Equation, Classification of Reactions, Solubility Rules | High School

    Lesson Plan: Do it Yourself Color!

    In this lesson students will use solubility rules to predict whether the product of a double displacement or metathesis reaction will produce a precipitate. Students will then investigate a series of reactions to verify solubility rules. Finally students will determine the identity of unknown solutions based on experimental evidence.

  • Ionic Bonding, Net Ionic Equation | High School

    Lab: The pH of Salts

    In this lab, students will determine whether an aqueous solution is acidic, basic, or neutral. Students will write net ionic equations for the hydrolysis of a solution.

  • Observations, Chemical Change, Net Ionic Equation, Reduction, Activity Series, Redox Reaction, Oxidation | High School

    Lab: Fine Art of Redox

    In this lab, students will practice writing and balancing redox reactions and use the activity series to verify the outcome of a chemical reaction.

  • Observations, Separating Mixtures, Solubility, Concentration, Precipitate, Identifying an Unknown, Molarity, Net Ionic Equation, Balancing Equations, Percent Yield, Stoichiometry, Limiting Reactant, Mole Concept, Dimensional Analysis, Graphing | High School

    Lab: White Lab

    In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.

  • Solubility, Precipitate, Chemical Change, Net Ionic Equation, Balancing Equations, Chemical Change, Solubility Rules | High School

    Lab: Ions in Aqueous Solution Presentation

    In this lab, students will mix ionic solutions to determine what combinations form precipitates.

  • Molarity, Net Ionic Equation, Exothermic & Endothermic, Heat of Neutralization, Calorimetry, Specific Heat, Temperature, Mole Concept, Dimensional Analysis, Measurements, Acid Base Reactions, Bond Energy | High School

    Lab: Heat of Neutralization

    In this lab, students carry out an acid base reaction to calculate the heat of neutralization.

  • Net Ionic Equation, Reduction, Redox Reaction, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Error Analysis | High School

    Lab: Four-Way Galvanic Cell

    In this lab, students will build a simple galvanic cell to measure cell potential and will compare their data to theoretical calculations. Students will become more familiar with cells during this opportunity to investigate and compare numerous electrochemistry reactions.

  • Concentration, Precipitate, Net Ionic Equation, Balancing Equations, Stoichiometry, Limiting Reactant, Mole Concept, Dimensional Analysis | High School

    Lab: Finding CO2 Mass in your Breath

    In this lab, students will measure how much carbon dioxide they exhale by reacting their exhaled breath with lime water (calcium hydroxide).

  • Identifying an Unknown, Net Ionic Equation, Stoichiometry, Percent Composition, Molar Mass, Error Analysis | High School

    Lab: Analysis of Carbonate Compounds

    In this lab, students calculate the molar masses of three unknown carbonate compounds by measuring the amount of product (CO2) produced by a reaction with hydrochloric acid.

Filtered By

Subtopics: Net Ionic Equation

Clear All Filters

Available Filters