Classroom Resources: Atomic Structure


Filter by:

  1. Sort by:


26 – 50 of 61 Classroom Resources

  • Periodic Table, History, Physical Properties, Chemical Properties, Subatomic Particles, Atomic Mass | Elementary School, Middle School, High School

    Access is an AACT member benefit. Activity: History of the Periodic Table Video Questions Mark as Favorite (39 Favorites)

    In this activity, students will answer questions while watching a video about how the periodic table was developed and learn about those who contributed to it.

  • Atomic Theory, Orbitals , Electrons, Model of the Atom, Subatomic Particles, History | Middle School, High School

    Access is an AACT member benefit. Activity: Neils Bohr Video Questions Mark as Favorite (28 Favorites)

    In this activity, students will answer questions while watching a video about Niels Bohr and learn how he redefined thinking about the atom and the electron. His model of the atom advanced our understanding of subatomic particles and holds an important place in the history and development of atomic theory.

  • Radioactive Isotopes, Radiation, Half Lives, Subatomic Particles, Model of the Atom, History | Middle School, High School

    Access is an AACT member benefit. Activity: Marie Curie Video Questions Mark as Favorite (23 Favorites)

    In this activity, students will watch a short video and learn about Marie Curie, her Nobel Prizes, radiation experiments, and discovery of new elements.

  • Atomic Theory, Subatomic Particles, Model of the Atom, History | Middle School, High School

    Access is an AACT member benefit. Activity: Ernest Rutherford Video Questions Mark as Favorite (21 Favorites)

    In this activity, students will watch a video about Ernest Rutherford. They will learn about his great contributions to chemistry, including his study of alpha particles and his use of the gold foil experiment. They will also find out that he won the Nobel Prize in chemistry for his studies on radioactive substances.

  • Isotopes, Atomic Mass, Subatomic Particles | Middle School, High School

    Access is an AACT member benefit. Activity: Candy Isotopes & Atomic Mass Mark as Favorite (74 Favorites)

    In this activity, students will learn about isotopes and be introduced to basic average atomic mass calculations. They will use simple numbers and M&M candies to model ratios that approximate real world atomic mass values on the periodic table.

  • Radioactive Isotopes, Atomic Theory, History, Pros Cons of Nuclear Power, Radiation, Subatomic Particles | Middle School, High School

    Access is an AACT member benefit. Activity: Lise Meitner Video Questions Mark as Favorite (15 Favorites)

    In this activity, students will complete a short series of questions as they watch the Founders of Chemistry video about Lise Meitner. The video tells the story of Lise Meitner, a pioneering female scientist in the field of nuclear chemistry, who was denied a Nobel Prize but has an Element named in her honor.

  • Periodic Table, Elements, History, Subatomic Particles, Atomic Mass, Ionic Bonding, Covalent Bonding | Middle School, High School

    Project: Exploring Elements Mark as Favorite (40 Favorites)

    In this project, students will select an element and then use Ptable.com to explore aspects of the element including its periodicity, electron configuration, history, and uses in industry.

  • Isotopes, Atomic Mass, Subatomic Particles | Middle School, High School

    Simulation: Isotopes & Calculating Average Atomic Mass Mark as Favorite (64 Favorites)

    In the May 2017 simulation, students first learn how the average atomic mass is determined through a tutorial based on the isotope abundance for Carbon. Students will then interact within a workspace where they will select the number of isotopes, the mass of each isotope as well as their abundancies in order to successfully build a mystery element. Finally they will use their choices to calculate the average atomic mass of the mystery element.

  • Isotopes, Atomic Mass, Subatomic Particles | Middle School, High School

    Activity: Simulation Activity: Isotopes & Calculating Average Atomic Mass Mark as Favorite (86 Favorites)

    In this simulation, students first learn how the average atomic mass is determined through a tutorial based on the isotope abundance for Carbon. Students will then interact within a workspace where they will select the number of isotopes, the mass of each isotope as well as their abundancies in order to successfully build a mystery element. Finally they will use their choices to calculate the average atomic mass of the mystery element.

  • Subatomic Particles, Model of the Atom, Atomic Mass, Electrons | Middle School, High School

    Access is an AACT member benefit. Project: Element Project Mark as Favorite (74 Favorites)

    In this project, students will become familiar with and have a workable understanding of atomic structure. The students will also create and construct a model of an atom.

  • Atomic Theory, Model of the Atom, Subatomic Particles, History | High School

    Access is an AACT member benefit. Project: The Scientists Behind the Atom Mark as Favorite (89 Favorites)

    In this project, students will create a digital (or paper) book about the scientists who contributed to our understanding of the atom.

  • Subatomic Particles, Model of the Atom, Atomic Theory | Middle School, High School

    Lab: Investigating the Sizes of Atomic Particles Mark as Favorite (58 Favorites)

    In this lab, students will use yarn and peas to compare the sizes of the three subatomic particles and will see that most of an atom is empty space.

  • Atomic Theory, Electrons, Model of the Atom, Subatomic Particles, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Niels Bohr Video Mark as Favorite (61 Favorites)

    This video tells the story of Niels Bohr, a great scientist who redefined how we think about atoms and the electron. Bohr’s model of the atom helped to advance understanding of subatomic particles, and holds an important place in the history and development of the atomic theory.

  • Model of the Atom, Subatomic Particles, Atomic Mass, Valence Electrons, Atoms, Periodic Table, Elements | Middle School, High School

    Access is an AACT member benefit. Activity: Mystery Elements Mark as Favorite (66 Favorites)

    The students will work in cooperative groups to construct Bohr models of "mystery" elements and record missing information about each element. Students will also create a new "mystery" element card for a classmate to analyze and determine its identity.

  • Model of the Atom, Periodic Table, Subatomic Particles, Electrons, Valence Electrons, Ions | High School, Middle School

    Access is an AACT member benefit. Lab: Sweet Model of the Atom Mark as Favorite (57 Favorites)

    In this lesson, students will use different candies to represent electrons, protons, and neutrons to gain a better understanding of atoms, ions, and isotopes.

  • Atomic Radius, Ionic Radius, Electrons, Model of the Atom, Subatomic Particles, Periodic Table | Elementary School, Middle School, High School

    Access is an AACT member benefit. Animation: Atomic & Ionic Radii Animation Mark as Favorite (61 Favorites)

    This animation explores patterns in atomic and ionic radii. Students will look at the different sizes of atoms in the third period and the atoms in the sixth group to see trends across periods and down groups. They will also look at an atom and its corresponding cation as well as an atom and its corresponding anion. **This video has no audio**

  • Model of the Atom, Electrons, Electron Configuration, Quantum Numbers, Subatomic Particles, Periodic Table | High School

    Access is an AACT member benefit. Animation: Orbitals Animation Mark as Favorite (133 Favorites)

    This animation explores the shapes of the 1s, 2s, 2p, 3s, 3p, 4s, and 3d orbitals and how they build up and overlap as each successive orbital is added. **This video has no audio**

  • Radioactive Isotopes, History, Subatomic Particles, Model of the Atom, Atomic Theory | Middle School, High School

    Access is an AACT member benefit. Video: Ernest Rutherford Video Mark as Favorite (64 Favorites)

    Rutherford's initial research was studying alpha particles, which he hypothesized were helium nuclei. With the help of Hans Geiger, Rutherford conducted the gold foil experiment, which justifies that the nucleus of an atom is a dense collection of protons and contains the majority of an atom’s mass. It also inferred that most of the atom is empty space and electrons are not located in the nucleus. He won the Nobel Prize in chemistry in 1908 for his studies on radioactive substances.

  • Atomic Mass, Atomic Theory, Model of the Atom, Subatomic Particles, Periodic Table, History | Elementary School, Middle School, High School

    Access is an AACT member benefit. Video: Dimitri Mendeleev Video Mark as Favorite (63 Favorites)

    This video tells the story of how Dimitri Mendeleev organized the periodic table, even leaving gaps to be filled in with elements that weren't yet discovered.

  • Atomic Mass, Subatomic Particles | High School, Middle School, Elementary School

    Access is an AACT member benefit. Video: History of the Periodic Table Video Mark as Favorite (112 Favorites)

    In this video, Sam Kean tells the story of the development of the periodic table. He also pays tribute to each of the major scientific contributors, including Dimitri Mendeleev, who made great discoveries through their efforts to best organize the elements.

  • Periodic Table, Elements, Introduction, History, Atoms, Electrons, Subatomic Particles | Middle School, Elementary School, High School

    Access is an AACT member benefit. Activity: Writing Your Name using Chemical Element Symbols Mark as Favorite (22 Favorites)

    In this activity, students will use their creativity to spell their name (first or middle name and their last name) using chemical symbols of elements on the periodic table. For example, you can spell Yvonne using the symbols for yttrium (Y), vanadium (V), oxygen (O), nitrogen (N), and neon (Ne).

  • Isotopes, Atomic Mass, Subatomic Particles, Experimental Design | High School

    Access is an AACT member benefit. Lab: Isotopes Make Cents Mark as Favorite (37 Favorites)

    In this lab, students use a sample of pennies to mimic how average atomic mass is calculated.

  • Molecular Formula, Ionic Bonding, Covalent Bonding, Molecular Geometry, Naming Compounds, Lewis Structures, Periodic Table, Valence Electrons, Lewis Dot Diagrams, Ions, Subatomic Particles | High School, Middle School

    Activity: Simulation Activity: Ionic and Covalent Bonding Mark as Favorite (109 Favorites)

    In this simulation, students investigate both ionic and covalent bonding. Students will have the opportunity to interact with many possible combinations of atoms and will be tasked with determining the type of bond and the number of atom needed to form each. The simulation visually differentiates between the transferring of electrons when forming an ionic compound and the sharing of electrons when forming a covalent compound so that students can have a complete understanding of each. Finally, students will become familiar with the molecular formula, as well as the naming system for each type of bond and geometric shape, when applicable.

  • Review, Subatomic Particles, Ions, Isotopes, Electrons, Atomic Mass, Lewis Dot Diagrams, Model of the Atom, Balancing Equations | High School, Middle School

    Access is an AACT member benefit. Activity: Tic-Tac-Toe Review Mark as Favorite (36 Favorites)

    In this activity students collaborate to complete tic-tac-toe review questions to prepare for a test on the atomic structure unit. The idea behind the activity is to give students choice and you can read more about the inspiration for the activity in the May issue of Chemistry Solutions.

  • Periodic Table, History, Physical Properties, Chemical Properties, Elements, Identifying an Unknown, Atoms, Atomic Radius, Ionic Radius, Ionization Energy, Electron Affinity, Valence Electrons, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Lesson Plan: The Periodic Table Unit Plan Mark as Favorite (65 Favorites)

    The AACT high school classroom resource library and multimedia collection has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach the Periodic Table to your students.

Filtered By

Subtopics: Subatomic Particles

Grade Level: High School

Clear All Filters

    Available Filters