Classroom Resources: Atomic Structure


Filter by:

  1. Sort by:


1 – 25 of 62 Classroom Resources

  • Elements, Periodic Table, Model of the Atom, Review, Atomic Mass, Subatomic Particles | Elementary School, Middle School

    Activity: Periodic Table Challenge Game

    In this activity, students will play an online game that quizzes their knowledge about the atomic structure of the first 20 elements on the periodic table. Students will be asked to identify different elements based on information related to subatomic particles, placement on the periodic table or from a provided Bohr model. This game has several options for students to choose from, and can be used to review content, or as a formative assessment.

  • Physical Properties, Periodic Table, Review, Naming Compounds, Covalent Bonding, Ionic Bonding, VSEPR Theory, Electron Configuration, Stoichiometry, Limiting Reactant, Chemical Change, Subatomic Particles, Molecular Geometry, Lewis Structures | High School

    Activity: Chemistry Review Escape Room

    In this activity, students will work collaboratively to apply their chemistry knowledge in order to “escape the room.” They will work to solve four clues that span a plethora of topics ranging from Atomic Structure all the way up to Stoichiometry. These four clues will point them to four chemical reactions to conduct on a small-scale basis that will correspond with a four-digit combination to a lock. This engaging activity is not only fun for all students but also allows for interactive and collaborative review.

  • Physical Properties, Atoms, Model of the Atom, Electron Configuration, Valence Electrons, Subatomic Particles, Lewis Dot Diagrams, Electrons | Middle School, High School

    Project: Atomic Holiday Ornaments

    In this project, students will design an atomic holiday ornament for a chosen element, along with a certificate of authenticity to display on a “Chemis-tree”. Students will also have the opportunity to vote on the ornaments created by their classmates.

  • History, Atoms, Model of the Atom, Atomic Theory, Matter, Subatomic Particles, Electrons, Orbitals | High School

    Lesson Plan: Modeling Atomic Theories with Food

    In this lesson, students will create an initial model of an atom (using various food items) drawing from the knowledge that they brought into the class. They will then use the same materials to work through an interactive note-taking lesson on how the model of the atom evolved over time. Having completed the interactive notes, the students return to their original models and adjust as needed.

  • Observations, Electricity, Atoms, Model of the Atom, Subatomic Particles, Electron Transfer, Electrons, Electrons | Middle School, High School

    Lesson Plan: Understanding Static Electricity

    In this lesson, students will complete a series of activities to explore how the imbalance of charges in materials creates static electricity and how those materials interact with others around them. They will describe the relationship between atomic structure, specifically the role of protons and electrons, and static electricity.

  • Elements, Periodic Table, Atoms, Model of the Atom, Isotopes, Atomic Mass, Subatomic Particles, Electrons | Middle School, High School

    Lesson Plan: Acting Out Atomic Structure

    In this lesson, students will model the location and behavior of protons, neutrons, and electrons that make up the structure of atoms, focusing on the first 18 elements on the periodic table. Students will model different elements first by adding protons and neutrons (colored balls) to make the nucleus (a basket). Then, the students themselves will represent the electrons that are always moving around the nucleus yet remaining within their designated energy level. This activity is easiest to complete outside or in a large open room to allow for enough room.

  • Model of the Atom, Electron Configuration, Atomic Theory, Valence Electrons, Subatomic Particles, Atomic Radius, Ionization Energy, Electrons, Orbitals | High School

    Activity: Bohr Model vs. Quantum Mechanical Model

    In this activity, students will compare two models of the atom using cognitive scaffolding to move from the more simplistic Bohr model to the more abstract and accurate quantum mechanical model. They will examine experimental data and use it to explain periodic trends that cannot be accounted for with the Bohr model.

  • Atoms, Isotopes, Subatomic Particles, Electrons, Ions | Middle School, High School

    Demonstration: Electrons and Ions Explained with Balloons

    In this demonstration, helium balloons and clothespin weights are used to demonstrate how adding an electron makes a negative ion, and removing an electron makes a positive ion, a concept that is often confusing to students.

  • Conservation of Mass, Atomic Mass, Subatomic Particles, Law of Conservation of Energy | High School

    Activity: Building a Nuclide

    In this activity, students will construct a model of a nuclide and use this model to investigate why the mass of the nuclide is less than the summative mass of the individual nucleons (protons and neutrons). Additionally, the constructed nuclide will be used to help students conceptualize and differentiate between key lesson terminology (mass defect, strong nuclear force, and nuclear binding energy).

  • Periodic Table, Half Lives, Subatomic Particles, Radioactive Isotopes | High School

    Activity: Why are Some Isotopes Radioactive?

    In this activity, students use periodic trends and data to make predictions about what makes an isotope radioactive. They will then verify or refine their predictions using a PhET simulation.

  • Atoms, Pros Cons of Nuclear Power, Subatomic Particles, Radioactive Isotopes, Fission/Fusion | High School

    Activity: Fission vs. Fusion Reading

    In this activity, students will annotate an informational text about fission and fusion using the “text-in-the-middle” reading strategy. They will then compare and contrast the two types of nuclear reactions.

  • Measurements, Scientific Notation, Subatomic Particles, Significant Figures | High School

    Activity: Quantitatively Puzzling

    In this activity, students will analyze sixteen chemistry-based clues and use the numbers, zero through fifteen as possible answer choices for each one. The clues cover content related to measurement, scientific notation, significant digits, atomic structure and the periodic table.

  • Introduction, Elements, History, Atoms, Review, Isotopes, Alpha/Beta/Gamma Decay, Subatomic Particles, Radioactive Isotopes, Electrons | Middle School, High School

    Activity: What are Isotopes? Video Questions

    In this lesson, students will watch a video and answer questions about isotopes. They will learn about the discovery of isotopes, the difference between chemical and nuclear reactions, different kinds of radioactive decay, and some uses of radioactive isotopes.

  • Radiation, Half Lives, Isotopes, Alpha/Beta/Gamma Decay, Atomic Mass, Subatomic Particles, Radioactive Isotopes | High School

    Activity: Radiological Applications of Isotopes

    In this lesson, students will apply their knowledge of nuclear notation using trading cards to investigate and discuss the applications of isotopes in the medical field. The conclusion of the activity includes a summative assessment where students must advertise the radiological services using their knowledge of isotopes and their medical applications

  • Atoms, Isotopes, Alpha/Beta/Gamma Decay, Subatomic Particles, Radioactive Isotopes | High School

    Activity: Using Stable Isotopes to Determine Material Origin

    In this lesson, students will review the concept of isotopes and apply the concepts of stability and relative abundance in order to determine the recent travels of a person of interest in a criminal investigation.

  • History, Model of the Atom, Atomic Theory, Subatomic Particles | High School

    Demonstration: The Hoopla about Atoms

    In this demonstration, students use a hula hoop that has a ball in the center (hung from a string) to simulate Rutherford’s gold foil experiment.

  • Elements, Periodic Table, Atomic Mass, Subatomic Particles | Middle School, High School

    Activity: Periodic Table Connect The Dots

    In this activity, students solve a series of clues about elements in order to uncover a message that has been hidden in the periodic table. Using the clues, students draw lines between identified elements on the table, which then connect to form the message. Two versions of this activity are available, varying the difficulty level of the clues.

  • Physical Properties, Elements, History, Periodic Table, Atomic Mass, Subatomic Particles | High School

    Activity: Which Element Am I?

    In this activity, students will be challenged by a list of clues that describe 50 different elements from the periodic table. Using their own knowledge, or the help of the internet students will determine the identity of each element based on the clue provided.

  • Atomic Spectra, Model of the Atom, Isotopes, Atomic Theory, Subatomic Particles, Emission Spectrum, Electrons, Orbitals , Ions | High School

    Lesson Plan: Atomic Structure Unit Plan

    The AACT high school classroom resource library has everything you need to put together a unit plan for your classroom: lessons, activities, labs, projects, videos, simulations, and animations. We constructed a unit plan using AACT resources that is designed to teach Atomic Structure to your students.

  • Electrostatic Forces, Subatomic Particles, Ionization Energy, Electrons | High School

    Lesson Plan: Coulomb's Law

    In this lesson students explore qualitative applications of Coulomb’s law within atoms and between ions and solvents.

  • Physical Properties, History, Periodic Table, Model of the Atom, Atomic Theory, Atomic Mass, Subatomic Particles, Chemical Properties | Elementary School, Middle School, High School

    Activity: Mendeleev Video Questions

    In this activity, students will watch a video and answer questions about Dimitri Mendeleev. They will learn about his contribution to chemistry, including his organization of the periodic table and awareness to leave gaps for elements that weren’t yet discovered.

  • Physical Properties, History, Periodic Table, Atomic Mass, Subatomic Particles, Chemical Properties | Elementary School, Middle School, High School

    Activity: History of the Periodic Table Video Questions

    In this activity, students will answer questions while watching a video about how the periodic table was developed and learn about those who contributed to it.

  • History, Model of the Atom, Atomic Theory, Subatomic Particles, Electrons, Orbitals | Middle School, High School

    Activity: Neils Bohr Video Questions

    In this activity, students will answer questions while watching a video about Niels Bohr and learn how he redefined thinking about the atom and the electron. His model of the atom advanced our understanding of subatomic particles and holds an important place in the history and development of atomic theory.

  • History, Model of the Atom, Radiation, Half Lives, Subatomic Particles, Radioactive Isotopes | Middle School, High School

    Activity: Marie Curie Video Questions

    In this activity, students will watch a short video and learn about Marie Curie, her Nobel Prizes, radiation experiments, and discovery of new elements.

  • History, Model of the Atom, Atomic Theory, Subatomic Particles | Middle School, High School

    Activity: Ernest Rutherford Video Questions

    In this activity, students will watch a video about Ernest Rutherford. They will learn about his great contributions to chemistry, including his study of alpha particles and his use of the gold foil experiment. They will also find out that he won the Nobel Prize in chemistry for his studies on radioactive substances.

Filtered By

Subtopics: Subatomic Particles

Clear All Filters

Available Filters