Classroom Resources: Atomic Structure
Filter by:
1 – 25 of 64 Classroom Resources
-
Atoms, Model of the Atom, Atomic Theory | Middle School, High School
Activity: Animation Activity: Building Blocks of Matter Mark as Favorite (15 Favorites)
In this activity, students will view an animation that explores the idea that everything is made of atoms, and that since atoms are so extremely small, even small objects contain vast numbers of atoms. They will see several examples to illustrate this point. Then they will be given a brief overview of the evolution of how people thought about atoms from the ancient Greeks through Dalton.
-
Periodic Table, Introduction, History, Physical Properties, Chemical Properties, Electrons, Valence Electrons | Middle School, High School
Activity: How the Periodic Table Organizes the Elements Video Questions Mark as Favorite (79 Favorites)
In this activity, students will watch a video and answer questions about the organization of the periodic table. They will learn about how the elements on the periodic table are organized and what their location on the table can tell us about them.
-
Isotopes, Atoms, Electrons, Subatomic Particles, Elements, History, Introduction, Review, Alpha/Beta/Gamma Decay, Radioactive Isotopes | Middle School, High School
Activity: What are Isotopes? Video Questions Mark as Favorite (62 Favorites)
In this activity, students will watch a video and answer questions about isotopes. They will learn about the discovery of isotopes, the difference between chemical and nuclear reactions, different kinds of radioactive decay, and some uses of radioactive isotopes.
-
Electromagnetic Spectrum, Emission Spectrum, Emission Spectrum, Electrons | Middle School, High School
Lesson Plan: Let it Glow Mark as Favorite (40 Favorites)
In this lesson students will investigate the fluorescence of a variety of everyday items as well as prepared samples under a black light. Students will examine the concepts of absorption and subsequent emission of photons, as well as wavelength, frequency, and energy of electromagnetic radiation. As extension activities, students will learn about phosphorescence and research real-life applications of photoluminescence.
-
Model of the Atom, Atoms, Subatomic Particles, Electrons, Atomic Mass, Isotopes, Periodic Table, Elements | Middle School, High School
Lesson Plan: Acting Out Atomic Structure Mark as Favorite (1 Favorite)
In this lesson, students will model the location and behavior of protons, neutrons, and electrons that make up the structure of atoms, focusing on the first 18 elements on the periodic table. Students will model different elements first by adding protons and neutrons (colored balls) to make the nucleus (a basket). Then, the students themselves will represent the electrons that are always moving around the nucleus yet remaining within their designated energy level. This activity is easiest to complete outside or in a large open room to allow for enough room.
-
Electron Transfer, Electrons, Electricity, Model of the Atom, Atoms, Subatomic Particles, Electrons, Observations | Middle School, High School
Lesson Plan: Understanding Static Electricity Mark as Favorite (6 Favorites)
In this lesson, students will complete a series of activities to explore how the imbalance of charges in materials creates static electricity and how those materials interact with others around them. They will describe the relationship between atomic structure, specifically the role of protons and electrons, and static electricity.
-
Electromagnetic Spectrum, Emission Spectrum | Middle School
Lesson Plan: Understanding Light & Color Mark as Favorite (19 Favorites)
In this lesson students use spectroscopes to analyze the colors of sunlight reflected off a white surface, and determine various colors of light emitted by a multicolor LED bulb at different color settings. They predict what color an object will appear when observed under a certain color of light, and test their predictions with the LED bulb. Students explore how a color wheel can provide a useful model for determining the colors of light an object may absorb or reflect. Finally, students will investigate the color yellow. Many objects that appear yellow are not reflecting yellow light, but reflecting green and red. Students use their spectroscopes to search for objects that truly reflect yellow light.
-
Atomic Radius, Model of the Atom, Atomic Theory, History, Inferences | Middle School, High School
Lesson Plan: Indirectly Measuring the Atom Mark as Favorite (20 Favorites)
In this lesson, students will try to determine the radius of one circle and the total area of multiple circles on a piece of paper by indirect measurement. They will relate this to the experiment done by Ernest Rutherford in which he bombarded a gold foil with Alpha particles.
-
Radioactive Isotopes, Atomic Theory, History, Pros Cons of Nuclear Power, Radiation, Subatomic Particles | Middle School, High School
Activity: Lise Meitner Video Questions Mark as Favorite (16 Favorites)
In this activity, students will complete a short series of questions as they watch the Founders of Chemistry video about Lise Meitner. The video tells the story of Lise Meitner, a pioneering female scientist in the field of nuclear chemistry, who was denied a Nobel Prize but has an Element named in her honor.
-
Periodic Table, History, Physical Properties, Chemical Properties, Atoms, Model of the Atom, Atomic Radius, Subatomic Particles, Electrons, Valence Electrons, Electron Configuration, Orbitals , Isotopes, Atomic Mass | High School, Middle School
Activity: Ptable.com Investigations Mark as Favorite (161 Favorites)
In this activity, students will use the online periodic table found at www.ptable.com to investigate a number of chemistry concepts. Students will use this online resource to explore information about the elements, including historical data, physical properties, periodic trends and more.
-
Electricity, Energy & Thermodynamics, Law of Conservation of Energy, Anode, Cathode, Electron Transfer, Electrons, Subatomic Particles, Electrons | Middle School
Lesson Plan: Battery Basics Mark as Favorite (12 Favorites)
In this lesson students will explore the chemical reaction that occurs within a lead-acid car battery and the role of the battery within a car prior to creating their own batteries.
-
Electricity, Atoms, Electrons, Electrons, Culminating Project, Interdisciplinary | Elementary School, Middle School
Activity: Electrical Circuit Quiz Box Mark as Favorite (4 Favorites)
In this activity, students will learn that the flow of electrons within a closed circuit make our lives easier. Students will construct a circuit quiz box that lights up when the correct question and answer are chosen.
-
Bohr Model, Model of the Atom, Subatomic Particles | Middle School
Project: Modeling the Bohr Model Mark as Favorite (6 Favorites)
In this project, students will research the properties and uses of an element as well as create a 3-dimensional physical Bohr model of the element. Then students will create a video recording of themselves sharing the details of their model as well as required research findings.
-
Review, Subatomic Particles, Ions, Isotopes, Electrons, Atomic Mass, Lewis Dot Diagrams, Model of the Atom, Balancing Equations | High School, Middle School
Activity: Tic-Tac-Toe Review Mark as Favorite (41 Favorites)
In this activity students collaborate to complete tic-tac-toe review questions to prepare for a test on the atomic structure unit. The idea behind the activity is to give students choice and you can read more about the inspiration for the activity in the May issue of Chemistry Solutions.
-
Isotopes, Atomic Mass, Subatomic Particles | Middle School, High School
Activity: Candy Isotopes & Atomic Mass Mark as Favorite (77 Favorites)
In this activity, students will learn about isotopes and be introduced to basic average atomic mass calculations. They will use simple numbers and M&M candies to model ratios that approximate real world atomic mass values on the periodic table.
-
Atomic Radius, Scientific Notation, Measurements | Middle School, High School
Activity: Powers of 10 - How Small Is an Atom? Mark as Favorite (25 Favorites)
In this activity, students will use an online interactive to investigate the size of an atom, and compare the size of the atom to other objects using scientific notation.
-
Atomic Theory, Subatomic Particles, Model of the Atom, History | Middle School, High School
Activity: Ernest Rutherford Video Questions Mark as Favorite (23 Favorites)
In this activity, students will watch a video about Ernest Rutherford. They will learn about his great contributions to chemistry, including his study of alpha particles and his use of the gold foil experiment. They will also find out that he won the Nobel Prize in chemistry for his studies on radioactive substances.
-
Radioactive Isotopes, Radiation, Half Lives, Subatomic Particles, Model of the Atom, History | Middle School, High School
Activity: Marie Curie Video Questions Mark as Favorite (24 Favorites)
In this activity, students will watch a short video and learn about Marie Curie, her Nobel Prizes, radiation experiments, and discovery of new elements.
-
Atomic Theory, Orbitals , Electrons, Model of the Atom, Subatomic Particles, History | Middle School, High School
Activity: Neils Bohr Video Questions Mark as Favorite (30 Favorites)
In this activity, students will answer questions while watching a video about Niels Bohr and learn how he redefined thinking about the atom and the electron. His model of the atom advanced our understanding of subatomic particles and holds an important place in the history and development of atomic theory.
-
Periodic Table, History, Physical Properties, Chemical Properties, Subatomic Particles, Atomic Mass | Elementary School, Middle School, High School
Activity: History of the Periodic Table Video Questions Mark as Favorite (46 Favorites)
In this activity, students will answer questions while watching a video about how the periodic table was developed and learn about those who contributed to it.
-
Periodic Table, History, Physical Properties, Chemical Properties, Atomic Mass, Atomic Theory, Model of the Atom, Subatomic Particles | Elementary School, Middle School, High School
Activity: Mendeleev Video Questions Mark as Favorite (36 Favorites)
In this activity, students will watch a video and answer questions about Dimitri Mendeleev. They will learn about his contribution to chemistry, including his organization of the periodic table and awareness to leave gaps for elements that weren’t yet discovered.
-
Molecular Formula, Ionic Bonding, Covalent Bonding, Molecular Geometry, Naming Compounds, Lewis Structures, Periodic Table, Valence Electrons, Lewis Dot Diagrams, Ions, Subatomic Particles | High School, Middle School
Activity: Simulation Activity: Ionic and Covalent Bonding Mark as Favorite (122 Favorites)
In this simulation, students investigate both ionic and covalent bonding. Students will have the opportunity to interact with many possible combinations of atoms and will be tasked with determining the type of bond and the number of atom needed to form each. The simulation visually differentiates between the transferring of electrons when forming an ionic compound and the sharing of electrons when forming a covalent compound so that students can have a complete understanding of each. Finally, students will become familiar with the molecular formula, as well as the naming system for each type of bond and geometric shape, when applicable.
-
Periodic Table, Elements, Atomic Mass, Subatomic Particles | Middle School, High School
Activity: Periodic Table Connect The Dots Mark as Favorite (137 Favorites)
In this activity, students solve a series of clues about elements in order to uncover a message that has been hidden in the periodic table. Using the clues, students draw lines between identified elements on the table, which then connect to form the message. Two versions of this activity are available, varying the difficulty level of the clues.
-
Model of the Atom, Subatomic Particles, Atomic Mass, Valence Electrons, Atoms, Periodic Table, Elements | Middle School, High School
Activity: Mystery Elements Mark as Favorite (73 Favorites)
The students will work in cooperative groups to construct Bohr models of "mystery" elements and record missing information about each element. Students will also create a new "mystery" element card for a classmate to analyze and determine its identity.
-
Subatomic Particles, Model of the Atom, Atomic Theory | Middle School, High School
Lab: Investigating the Sizes of Atomic Particles Mark as Favorite (63 Favorites)
In this lab, students will use yarn and peas to compare the sizes of the three subatomic particles and will see that most of an atom is empty space.