Classroom Resources: Chemistry Basics


Filter by:

  1. Sort by:


501 – 510 of 510 Classroom Resources

  • Molecular Formula, Ionic Bonding, Covalent Bonding, Molecular Geometry, Naming Compounds, Lewis Structures, Periodic Table, Valence Electrons, Lewis Dot Diagrams, Ions, Subatomic Particles | High School, Middle School

    Simulation: Ionic & Covalent Bonding Mark as Favorite (155 Favorites)

    In the September 2016 simulation, students investigate both ionic and covalent bonding. Students will have the opportunity to interact with many possible combinations of atoms and will be tasked with determining the type of bond and the number of atom needed to form each. Students will become familiar with the molecular formula, as well as the naming system for each type of bond and geometric shape, when applicable.

  • Electron Affinity, Atomic Radius, Ionic Radius, Ions, Atoms, Periodic Table, Model of the Atom, Subatomic Particles, Electrons, Valence Electrons | High School

    Simulation: Periodic Trends II: Electron Affinity, Atomic Radius & Ionic Radius Mark as Favorite (28 Favorites)

    The May 2016 simulation is a follow-up to the March 2016 simulation. Students will focus their investigation on the electron affinity of an atom. Through the use of this simulation students will have the opportunity to examine the formation of an anion as well as compare the atomic radius of a neutral atom to the ionic radius of its anion.

  • Atomic Radius, Ionic Radius, Ionization Energy, Valence Electrons, Periodic Table, Atoms, Electrons, Subatomic Particles, Ions, Model of the Atom | High School

    Simulation: Periodic Trends: Ionization Energy, Atomic Radius & Ionic Radius Mark as Favorite (93 Favorites)

    In this simulation for the March 2016 issue, students can investigate the periodic trends of atomic radius, ionization energy, and ionic radius. By choosing elements from the periodic table, atoms can be selected for a side by side comparison and analysis. Students can also attempt to ionize an atom by removing its valence electrons. Quantitative data is available for each periodic trend, and can be further examined in a graph.

  • Culminating Project, Review, Physical Properties, Chemical Properties, Periodic Table, History, Interdisciplinary, Electron Configuration, Subatomic Particles, Isotopes, Atomic Mass | High School, Middle School

    Access is an AACT member benefit. Project: 21st Century Elements Mark as Favorite (38 Favorites)

    In this project, students will learn the importance of the elements in our lives. The students will research one chosen element and create a website, a digital comic strip, or a video to explain the important properties of the element as well as why the element is so important to our lives.

  • Calorimetry, Exothermic & Endothermic, Temperature, Stoichiometry, Limiting Reactant, Chemical Change, Molarity, Enthalpy, Heat, Concentration, Experimental Design, Scientific Method | High School

    Lab: Less Than Zero Mark as Favorite (34 Favorites)

    In this lab, students will investigate the endothermic reaction between baking soda and HCl. Students will consider stoichiometric ratios, molar concentrations, reaction scale, and calorimetry. The lab starts with a scripted reaction that uses given molar ratios, a glass beaker, and 2-M HCl. They will witness a temperature drop of about 5 to 8 C. Students then adjust the experiment so they can achieve a temperature drop of more than 20 C.

  • Molecular Motion, Density, Physical Properties, Density, Gas Laws, Ideal Gas, Temperature, Pressure, Volume | Middle School, High School

    Simulation: Density Mark as Favorite (13 Favorites)

    The simulation for the September 2015 issue allows students to investigate the effect of changing variables on both the volume and the density of a solid, a liquid, and a gas sample. Students will analyze the different states of matter at the particle level as well as quantitatively.

  • Density, Molecular Motion | Middle School, High School

    Activity: Simulation Activity: Density Simulation Mark as Favorite (28 Favorites)

    In this simulation, students will investigate the effect of changing variables on both the volume and the density of a solid, a liquid and a gas sample. Students will analyze the different states of matter at the particle level as well as quantitatively. This lesson accompanies the simulation from the September 2015 issue of Chemistry Solutions.

  • Le Châtelier's Principle, Establishing Equilibrium, Reversible Reactions, Reaction Rate, Equilibrium Constants, Graphing | High School

    Access is an AACT member benefit. Lab: Dynamic Equilibrium Simulation Mark as Favorite (33 Favorites)

    In this lab, students will explore equilibrium using paper clips to mimic a chemical reaction.

  • Intermolecular Forces, Polarity, Molecular Motion, Intermolecular Forces, Molecular Motion, Physical Change | High School

    Simulation: Comparing Attractive Forces Mark as Favorite (38 Favorites)

    In the November 2014 issue, students explore the different attractive foreces between pairs of molecules by dragging the "star" image. In the accompanying activity, students investigate different types of intermolecular forces (London dispersion and dipole-dipole). In the analysis that follows the investigation, they relate IMFs (including hydrogen bonding) to physical properties (boiling point and solubility).

  • Balancing Equations, Conservation of Mass, Conservation of Matter, Conservation of Matter, Chemical Change, Chemical Change, Conservation of Mass, Polyatomic Ions, Precipitate | Middle School, High School

    Activity: Simulation Activity: Balancing Chemical Equations Mark as Favorite (85 Favorites)

    In this activity, students will learn how to count atoms and how to balance chemical equations using a simulation and games from PhET Interactive Simulations.

Filtered By

Grade Level: High School

Clear All Filters

    Available Filters