Classroom Resources: Molecules & Bonding
Filter by:
26 – 44 of 44 Classroom Resources
-
Intermolecular Forces, Polarity, Molecular Structure | High School
Lab: Investigating Water Resistance Through Fabric Identification Mark as Favorite (33 Favorites)
In this lab, students will design a procedure to test and compare the water resistance ability of several unidentified fabric samples. Students will then attempt to identify each of the unknown fabric samples by analyzing the polarity of each molecular structure in combination with the data collected in their test.
-
Intermolecular Forces, Polarity, Covalent Bonding, Lewis Structures, Molecular Geometry, Physical Properties | High School
Simulation: Intermolecular Forces Mark as Favorite (159 Favorites)
In this simulation, students will review the three major types of intermolecular forces and answer quiz questions using the relative strengths of these forces to compare different substances given their name, formula, and Lewis structure.
-
Intermolecular Forces, Polarity, Molecular Motion, Intermolecular Forces, Molecular Motion, Physical Change | High School
Simulation: Comparing Attractive Forces Mark as Favorite (49 Favorites)
In the November 2014 issue, students explore the different attractive foreces between pairs of molecules by dragging the "star" image. In the accompanying activity, students investigate different types of intermolecular forces (London dispersion and dipole-dipole). In the analysis that follows the investigation, they relate IMFs (including hydrogen bonding) to physical properties (boiling point and solubility).
-
Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School
Video: Ingenious Video 5: Making Shipping Greener with Hairy Ships Mark as Favorite (6 Favorites)
The “fouling” of boats — when aquatic animals like barnacles and tubeworms attach to hulls — has been a nuisance for as long as we’ve been sailing the seas. Fouling messes up a vessel’s streamlined shape, decreasing its speed, maneuverability, and in modern times, its fuel-efficiency. Fouling spikes the carbon footprint of the shipping industry, already greater than that of most countries. For centuries, people used copper coatings to prevent fouling. Modern solutions use toxic chemical paints that pollute the water, kill marine life, and contribute to the degradation of our oceans when they wear off. A new approach is trying to work with nature instead of against it. Taking inspiration from the Salvinia plant, which is covered in tiny hair-like structures that make it basically waterproof, scientists are developing a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.
-
Molecular Structure, Intermolecular Forces, Polarity, Polymers, Molecular Structure , Functional Groups, Polymers | High School
Video: Ingenious Video 6: Kill More Germs by Cleaning … Less? Mark as Favorite (2 Favorites)
There’s clean, and then there’s CLEAN. Even if something looks clean, it might still be harboring microbes – many of them harmless, some of them definitely not. With most of the ways that we clean and disinfect — that is, kill germs — the clean doesn’t last as long as you might think. Disinfectants work by attacking bacterial membranes and viral protein coats, breaking them down so that those germs fall apart and die. But the germaphobes were always right: As soon as a disinfectant dries, and a surface is re-exposed, like if someone touches or (worse) sneezes on it, it needs be disinfected all over again. The next generation of cleaning products, however, add a trick: they lay down an incredibly thin polymer layer that keeps the germ-killing ingredients in place and effective for 24 hours at a time.
-
Molecular Structure, Intermolecular Forces, Polarity, Polymers, Molecular Structure , Functional Groups, Polymers | High School
Activity: Ingenious: Kill More Germs by Cleaning … Less? Video Questions Mark as Favorite (5 Favorites)
In this activity, students will answer questions while watching the video, Kill More Germs by Cleaning… Less?, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the chemistry of cleaning. Unfortunately, clean doesn’t last as long as you might think—this video examines how disinfectants work and also how long they lasts. Scientists share about the next generation of cleaning products, that keeps the germ-killing ingredients in place and effective much longer.
-
Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School
Activity: Ingenious: Making Shipping Greener with Hairy Ships Video Questions Mark as Favorite (4 Favorites)
In this activity, students will answer questions while watching the video, Making Shipping Greener with Hairy Ships, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the “fouling” of boats (when aquatic animals like barnacles and tubeworms attach to hulls), and the impact it has on fuel efficiency. Since fouling is a significant contributor to the carbon footprint, this video highlights how scientists were inspired by unique aquatic plants to develop a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.
-
Intermolecular Forces, Boiling Point, Heat of Vaporization , Molar Mass, Polarity, Intermolecular Forces | High School
Lab: Heat of Vaporization Mark as Favorite (10 Favorites)
In this lab, students test whether a substance’s heat of vaporization is determined by its molar mass, the strength of its intermolecular forces, or both.
-
Intermolecular Forces, Physical Change, Intermolecular Forces, Polarity | High School
Activity: Intermolecular Forces Activity Mark as Favorite (17 Favorites)
In this activity, students will represent molecules and energy to investigate the different types of intermolecular forces.
-
Ionic Bonding, Bond Energy, Electronegativity, Intramolecular Forces, Lewis Structures, Polarity | High School
Lesson Plan: Bond Strength of Ionic Salts Mark as Favorite (22 Favorites)
In this lesson, students will discover that dissolving salts changes the temperature of a solution even though it is a physical change. Students will first collect data during an investigation to compare the temperature change when dissolving three different salts (NaCl, KCl, and CaCl2). Then students will use magnets to construct an explanation of the temperature change based on collision of particles and properties of the metals.
-
Solubility, Intermolecular Forces, Intermolecular Forces, Mixtures, Intramolecular Forces, Polarity, Observations, Physical Properties, Chemical Properties, Identifying an Unknown, Mixtures | High School
Lab: Solubility & Compound Type Mark as Favorite (41 Favorites)
In this lesson, students determine whether unknown substances are polar, nonpolar, or ionic by testing their solubilities.
-
Molecular Structure, Intermolecular Forces, Ionic Bonding, Covalent Bonding, Metallic Bonding, Polarity, Intramolecular Forces, Chemical Properties, Physical Properties, Interdisciplinary, Culminating Project | High School
Project: Problem-Solving with Materials Mark as Favorite (59 Favorites)
In this project, students will develop a presentation to explain how and why a specific material can solve a problem. The explanation will involve researching the properties of the material and how its properties are suited for solving a specific problem.
-
Intermolecular Forces, Polarity | High School
Lesson Plan: Potential Energy Introduction Mark as Favorite (10 Favorites)
In this activity, students will follow a guided inquiry introduction to potential energy. Students begin by investigating a video model of magnetic water molecules and review their ideas about charge, and attraction or repulsion due to charge. Then, using a Google Drawing manipulative box, students place their digital water molecules into attraction and repulsion orientations. Next, they indicate the direction of force and show how potential energy is increasing when the molecules are moved in a direction opposite to the force.
-
Intermolecular Forces, Ionic Bonding, Covalent Bonding, Lewis Structures, Polarity | High School
Demonstration: Interactions Between Particles Mark as Favorite (21 Favorites)
In groups of six to eight, students will observe the behavior of substances and mixtures to determine the relative strength of intermolecular forces between the particles in each substance or mixture. They will then arrange different cards representing ions and molecules based on intermolecular forces to determine the best molecular level representation of the physical samples they observed.
-
Covalent Bonding, Lewis Structures, VSEPR Theory, Electronegativity, Polarity, Atomic Radius, Valence Electrons | High School
Project: Molecular Modeling Mark as Favorite (111 Favorites)
In this project, students will research a molecule selected from the teacher approved list, construct a three-dimensional model of the molecule, and present their research to the class in a 7-10 minute oral presentation.
-
Polarity, VSEPR Theory, Molecular Geometry, Electronegativity, Covalent Bonding | High School
Lesson Plan: Polarity Mark as Favorite (41 Favorites)
In this lesson, students learn some tips about how to determine whether a molecule is polar or nonpolar by question features about Lewis structures and symmetry.
-
Covalent Bonding, Ionic Bonding, Metallic Bonding, Electronegativity, Polarity, Intermolecular Forces | High School
Activity: James Bonded Mark as Favorite (17 Favorites)
In this activity, students create a video of collisions that represent chemical reactions.
-
Intermolecular Forces, Molecular Geometry, Polarity | High School
Lesson Plan: The Great Race: A Study of van der Waals Forces Mark as Favorite (9 Favorites)
In this lesson students will investigate intermolecular attractive forces, van der Waals forces. They will construct models of specified molecules and use the models to identify the van der Waals forces that exist between molecules of each substance (London dispersion forces, dipole-dipole forces and hydrogen bonds). Then, using manometers, teams will perform a series of races to determine which substance has the stronger van der Waals forces.
-
Intermolecular Forces, Polarity, Lewis Structures, Covalent Bonding | High School
Lab: Exploring Intermolecular Forces and Properties of Liquids Mark as Favorite (32 Favorites)
In this lab, students will compare and assess the effects of polarity and intermolecular forces of different liquid samples.