Classroom Resources: Reactions & Stoichiometry
Filter by:
26 – 50 of 253 Classroom Resources
-
Heat, Temperature, Specific Heat, Law of Conservation of Energy, Enthalpy, Calorimetry, Exothermic & Endothermic, Balancing Equations, Chemical Change, Measurements, Mole Concept, Dimensional Analysis, Culminating Project, Interdisciplinary, Review, Graphing, Observations, Chemical Properties, Physical Properties | High School
Project: Handwarmer Design Challenge Mark as Favorite (35 Favorites)
In this project, students will use their knowledge of thermodynamics to design a handwarmer for a manufacturing company that can maintain a temperature of 30-40°C for at least 5 minutes and is designed for the average human hand. Students will create a final product after rounds of testing and an advertising poster that summarizes the results of their testing and promotes their design.
-
Review, Periodic Table, Physical Properties, Subatomic Particles, Electron Configuration, Covalent Bonding, Ionic Bonding, Naming Compounds, Molecular Geometry, VSEPR Theory, Lewis Structures, Chemical Change, Limiting Reactant, Stoichiometry | High School
Activity: Chemistry Review Escape Room Mark as Favorite (132 Favorites)
In this activity, students will work collaboratively to apply their chemistry knowledge in order to “escape the room.” They will work to solve four clues that span a plethora of topics ranging from Atomic Structure all the way up to Stoichiometry. These four clues will point them to four chemical reactions to conduct on a small-scale basis that will correspond with a four-digit combination to a lock. This engaging activity is not only fun for all students but also allows for interactive and collaborative review.
-
Combustion, Chemical Change, Balancing Equations, Reaction Rate, Conservation of Mass, Conservation of Matter, Stoichiometry, Limiting Reactant, Chemical Change, Conservation of Matter, Conservation of Mass, Graphing, Error Analysis, Accuracy, Observations, Inferences, Interdisciplinary, Reaction Rate, Catalysts, Measurements, Mole Concept | High School
Lesson Plan: Clean Air Chemistry Mark as Favorite (19 Favorites)
In this lesson, students will learn about air pollution and some steps toward mitigating it. First, they will burn a candle and measure its mass and the concentration of CO2 over time. Students will discuss which data set they have more confidence in and why and then use stoichiometry to predict outcomes. Next, students explore incomplete combustion in a model-based worksheet that shows how a lack of O2 in the burning of fuels can produce air pollution. Students work together to interpret the models, define terms, and draw conclusions. Lastly, students work in groups using Lego models to illustrate how a catalytic converter works. They race “Nature” against catalysts “Palladium,” “Platinum,” and “Rhodium” to see what breaks down air pollution molecules fastest.
-
Stoichiometry, Balancing Equations, Predicting Products, Chemical Change, Mole Concept, Dimensional Analysis, Measurements, Chemical Change, Culminating Project | High School
Project: Chemical Reaction Soda Bottle Boat Race Mark as Favorite (82 Favorites)
In this project, students will design and build a soda bottle boat with the goal of having the fastest boat to get to the other end of the rain gutter racetrack. Students will have to complete stoichiometric calculations to determine an appropriate amount of “fuel” (baking soda + vinegar) to power their boat.
-
Reaction Rate, Concentration, Reaction Rate | High School
Lab: How Fast Can We Remove Tough Stains? Mark as Favorite (48 Favorites)
In this lab, students explore how temperature and concentration can affect reaction rate. Using various mixtures of OxiClean solutions, blue food coloring, and water students conduct several tests and draw conclusions based on their results.
-
Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School
Activity: Ingenious: Making Shipping Greener with Hairy Ships Video Questions Mark as Favorite (4 Favorites)
In this activity, students will answer questions while watching the video, Making Shipping Greener with Hairy Ships, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the “fouling” of boats (when aquatic animals like barnacles and tubeworms attach to hulls), and the impact it has on fuel efficiency. Since fouling is a significant contributor to the carbon footprint, this video highlights how scientists were inspired by unique aquatic plants to develop a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.
-
Molecular Structure, Intermolecular Forces, Polarity, Molecular Structure , Combustion | High School
Video: Ingenious Video 5: Making Shipping Greener with Hairy Ships Mark as Favorite (6 Favorites)
The “fouling” of boats — when aquatic animals like barnacles and tubeworms attach to hulls — has been a nuisance for as long as we’ve been sailing the seas. Fouling messes up a vessel’s streamlined shape, decreasing its speed, maneuverability, and in modern times, its fuel-efficiency. Fouling spikes the carbon footprint of the shipping industry, already greater than that of most countries. For centuries, people used copper coatings to prevent fouling. Modern solutions use toxic chemical paints that pollute the water, kill marine life, and contribute to the degradation of our oceans when they wear off. A new approach is trying to work with nature instead of against it. Taking inspiration from the Salvinia plant, which is covered in tiny hair-like structures that make it basically waterproof, scientists are developing a stick-on silicone coating for ships that prevents animal hitchhikers from getting a foothold.
-
Solubility Rules, Solubility, Ionic Bonding, Predicting Products | High School
Activity: Solubility Rules Dice Game Mark as Favorite (36 Favorites)
In this activity, students will use ion dice to form a number of different ionic compounds. Based on the resulting ionic compound, they will use a solubility chart to determine if it is soluble or insoluble. This game will allow students to become more familiar with ionic compounds and solubility rules.
-
Identifying an Unknown, Experimental Design, Scientific Method, Chemical Change, Net Ionic Equation, Precipitate, Solubility, Solubility Rules, Balancing Equations, Predicting Products, Chemical Change | High School
Lab: Mislabeled Mess! Mark as Favorite (29 Favorites)
In this lab, students will identify 3 unknown acids by using the solubility rules. They will be given a list of materials and will design their own procedures for identifying the unknowns. For each combination of reactants, they will predict whether a product forms and, if it does, write complete and net ionic equations for those reactions.
-
Reaction Rate, Catalysts, Experimental Design, Chemical Change, Reaction Rate, Chemical Change | Middle School
Lesson Plan: Investigating Fast and Slow Reaction Rates Mark as Favorite (0 Favorites)
In this lesson, students will review the characteristics of chemical changes and then use a catalyst and an inhibitor to explore the reaction rate of the oxidation of iron.
-
Solubility, Conductivity, Concentration, Equilibrium Constants, Stoichiometry | High School
Lab: Experimental Determination of the Solubility Product Constant for Calcium Hydroxide Mark as Favorite (0 Favorites)
In this lab, students will predict and measure the relationship between the conductivity of a solution of calcium hydroxide and the mass of substance added to it. From the relationship, students will determine solubility and Ksp of calcium hydroxide. Ksp will be calculated using the molar concentration of ions in the solution and the equilibrium expression for the dissociation of calcium hydroxide.
-
Classification of Reactions, Conservation of Matter | Middle School, High School
Lesson Plan: An Introduction to Chemical Reactions: A Story of a Valentine’s Day Dance Mark as Favorite (40 Favorites)
In this lesson, students will be introduced to five basic types of chemical reactions through a metaphor about a high school dance. Afterwards students will complete research to fill out a graphic organizer and reinforce the introductory information.
-
Observations, Mixtures, Chemical Change, Physical Change, Chemical Change, pH | Elementary School
Demonstration: The Chemistry of Cheese Mark as Favorite (2 Favorites)
In this demonstration, students will observe the chemical process that occurs when making cheese. Students will be become more familiar with fundamental chemistry terms while making important observations.
-
Classification of Reactions, Redox Reaction, Activity Series, Oxidation, Reduction | High School
Lab: Investigating Oxidation-Reduction Reactions Mark as Favorite (15 Favorites)
In this lab, students will observe, classify and predict the products of single replacement, combination and decomposition reactions and provide a rationale for how reactions are classified using evidence from the lab and classroom.
-
Activity Series, Electrons, Electron Transfer, Balancing Equations, Predicting Products, Chemical Change, Chemical Change, Observations | High School
Activity: Simulation Activity: Metals in Aqueous Solutions Mark as Favorite (10 Favorites)
In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.
-
Activity Series, Chemical Change, Electrons, Electron Transfer, Balancing Equations, Chemical Change, Predicting Products, Observations, Acid Base Reactions | High School
Simulation: Metals In Aqueous Solutions Mark as Favorite (108 Favorites)
In this activity, students will run simulated tests of various metals in aqueous solutions to determine the relative reactivity of these metals. A total of eight metals will be observed in various combinations with the corresponding metal nitrate solutions and hydrochloric acid. Students will interpret the data collected to construct an activity series of the elements used in this simulation.
-
Activity Series, Balancing Equations, Predicting Products, Chemical Change, Chemical Change, Observations | High School
Lab: Activity Series of Unknown Metals Mark as Favorite (36 Favorites)
In this lab, students will create an activity series of metals from a series of reactions involving unknown metals. They will then compare their activity series and a list of metals used in this lab (supplied by the teacher after data collection) to a published activity series to identify the unknown metals.
-
Chemical Change, Volume | Elementary School, Middle School
Lab: Air Bag Design Challenge Mark as Favorite (13 Favorites)
In this lab, students will learn how chemistry is used in air bags. Students will model the inflation of an air bag by performing a series of reactions using baking soda and vinegar in a Ziploc bag. During this investigation, students will see that there is a relationship between the inflation size of the bag and the amount of reactants used. Finally, students will be challenged to design an air bag that can help an egg endure a crash test.
-
Classification of Reactions, Chemical Change, Balancing Equations, Acid Base Reactions, Combustion | Middle School, High School
Animation: Classifying Chemical Reactions Animation Mark as Favorite (38 Favorites)
This animation explores some of the ways to classify different types of chemical reactions. It covers synthesis (combination), decomposition, single replacement (single displacement), double replacement (double displacement), combustion, and acid-base neutralization reactions. This animation was featured in the November 2020 issue of Chemistry Solutions. **This video has no audio**
-
Molecular Structure , Functional Groups, Experimental Design, Interdisciplinary, Chemical Change | High School
Lab: Designing Biomimetic Songbird Preen Oil from Waste Cooking Oil Mark as Favorite (16 Favorites)
In this guided-inquiry lab, students will design and test a procedure reacting waste cooking oil in a blue cheese slurry to create a substance that mimics songbird preen oil, which is both antibacterial and hydrophobic. Students will convert the fatty acids in waste oil to methyl ketones, thought to be the principal antibacterial component of preen oil, using the P. roqueforti mold found in blue cheese. Students will expand their knowledge of biomimicry, inherent properties of preen oil, and chemical synthesis by applying the principles of green chemistry. They will also assess their own process through higher-order problem solving and building on their scientific research skills.
-
Classification of Reactions, Chemical Change, Balancing Equations, Acid Base Reactions | Middle School, High School
Activity: Animation Activity: Classifying Chemical Reactions Mark as Favorite (48 Favorites)
In this activity, students will view an animation that explores some of the ways to classify different types of chemical reactions. The animation covers synthesis (combination), decomposition, single replacement (single displacement), double replacement (double displacement), combustion, and acid-base neutralization reactions.
-
Exothermic & Endothermic, Temperature, Heat of Combustion, Chemical Change | Middle School
Lesson Plan: Chemical Volcanoes - A Tale of Two Reactions Mark as Favorite (0 Favorites)
In this lesson, students will use volcanoes as a vehicle to learn about the differences between endothermic and exothermic reactions by completing a hands-on activities and observing a teacher-led demonstration.
-
Limiting Reactant, Stoichiometry, Conservation of Matter | High School
Lesson Plan: Limiting Reactant and Mole of Reaction Mark as Favorite (0 Favorites)
In this lesson, students will identify limiting reagents (and the amounts of product produced) using the mole of reaction concept. This approach is designed to focus on calculations related to limiting reactant after a conceptual understanding of what a limiting reactant is has already been established.
-
Chemical Change, Reaction Rate, Chemical Change, Exothermic & Endothermic, Heat, Temperature | High School
Lab: A Comparison of Two Chemical Reactions Mark as Favorite (42 Favorites)
In this lab, students will perform two chemical reactions, one between acetic acid and sodium bicarbonate and the other between the citric acid and the sodium bicarbonate in an Alka-Seltzer tablet when dissolved in water. Both reactions will produce gas while reacting in a closed plastic sandwich bag, causing it to inflate. Students will observe the reactions and analyze the results in order to understand indicators of chemical changes, heat flow, and factors that affect reaction rates
-
Stoichiometry, Limiting Reactant, Percent Composition, Lewis Structures, Percent Composition | High School
Lab: Untouchable Key Escape Room Mark as Favorite (104 Favorites)
In this lab, students are presented with a key wrapped in aluminum foil a quantity of solid copper (II) chloride, a balance, distilled water and a selection of standard laboratory glassware and equipment. Without using their hands to touch the key, students must react the key with a copper (II) chloride solution in order to free the key and use it to escape from the chemistry classroom!