Classroom Resources: Energy & Thermodynamics
Filter by:
26 – 50 of 57 Classroom Resources
-
Calorimetry, Specific Heat, Heat, Temperature | High School, Middle School
Lab: Understanding Specific Heat Mark as Favorite (32 Favorites)
In this lab, students will get a general idea of specific heat by investigating the mixing of two liquids at different temperatures. In one case, the same liquids will be mixed, in another case different liquids will be mixed.
-
Temperature, History, Interdisciplinary, Chemical Change, Temperature, Heat | Middle School, High School
Lab: Greenhouse Gas Simulation Mark as Favorite (34 Favorites)
In this lab, students will create two simulations of the Earth’s atmosphere. They will compare a control model with a one that has an increased presence of carbon dioxide gas in order to analyze how this effects temperature. They will also complete research in order to learn more about the makeup of the Earth’s atmosphere.
-
Exothermic & Endothermic, Chemical Change, Heat, Temperature, Classification of Reactions | Middle School, High School
Lab: Designing Exothermic and Endothermic Reactions Mark as Favorite (20 Favorites)
In this lab, students will design and test an experiment for producing either an endothermic or an exothermic reaction. The goal of the lab is for students to successfully construct a reproducible procedure for a reaction that either releases or absorbs thermal energy, and that can be supported with data.
-
Heating Curve, Phase Changes, Intermolecular Forces, Freezing Point, Melting Point, Boiling Point, Heat of Fusion, Heat of Vaporization , Molecular Motion, Temperature, Heat, Specific Heat | High School, Middle School
Activity: Simulation Activity: Heating Curve of Water Mark as Favorite (93 Favorites)
In this simulation, students will investigate qualitatively and quantitatively what happens as water changes states.
-
Specific Heat, Heat, Temperature | High School
Simulation: Understanding Specific Heat Capacity Mark as Favorite (74 Favorites)
In this simulation, students will play the role of engineer. They will calculate the specific heat capacity of various materials to determine which ones meet stated criteria and then perform a cost analysis to determine which material to use.
-
Heating Curve, Phase Changes, Intermolecular Forces, Freezing Point, Melting Point, Boiling Point, Heat of Vaporization , Molecular Motion, Temperature, Specific Heat, Heat, Heat of Fusion | Middle School, High School
Simulation: Heating Curve of Water Mark as Favorite (53 Favorites)
In the May 2015 issue, students explore the heating curve for water from a qualitative and quantitative perspective. Students compare illustrations of each physical state depicted on the curve and calculate the energy required to transition from one state to another.
-
Colligative Properties, Boiling Point Elevation, Freezing Point Depression, Concentration, Solute & Solvent, Boiling Point, Freezing Point, Phase Changes, Molecular Motion, Graphing, Physical Properties, Heat, Temperature | High School
Simulation: Colligative Properties Mark as Favorite (34 Favorites)
In this simulation, students will investigate the effects of different solutes, and different amounts of those solutes, on the boiling point and freezing point of a solution. Students will see particle-level animations of boiling and freezing with different types and amounts of solutes, as well as graphical representations of the results of each trial.
-
Colligative Properties, Boiling Point Elevation, Freezing Point Depression, Concentration, Solute & Solvent, Boiling Point, Freezing Point, Phase Changes, Molecular Motion, Graphing, Physical Properties, Heat, Temperature | Middle School, High School
Activity: Simulation Activity: The Effect of Solutes on Boiling and Freezing Point Mark as Favorite (43 Favorites)
In this activity, students will use a colligative properties simulation to investigate the effects of different solutes, and different amounts of those solutes, on the boiling point and freezing point of a solution. Students will see particle-level animations of boiling and freezing with different types and amounts of solutes, as well as graphical representations of the results of each trial.
-
Electromagnetic Spectrum, Heat, Radiation, Physical Properties, Chemical Properties, History, Interdisciplinary, Functional Groups, Molecular Structure | High School
Lesson Plan: Mars Exploration with Infrared Spectrometers Mark as Favorite (12 Favorites)
In this lesson, students will learn about how space scientists used infrared spectrometers to explore Mars through an article reading. Space exploration involves a lot of chemistry, which many students are surprised to learn. There are a series of activities to help promote literacy in the science classroom related to the reading. This lesson could be easily used as plans for a substitute teacher, as most of the activities are self-guided.
-
Temperature, Temperature, Heat, Photosynthesis, Isotopes | High School
Lesson Plan: Climate Change and the Keeling Curve Mark as Favorite (20 Favorites)
In this lesson, students will learn about climate change through reading about research behind carbon dioxide emissions, which led to the development of the Keeling Curve. Isotopic tracing as well as photosynthesis are briefly touched on. There are a series of activities to help promote literacy in the science classroom related to the reading. This lesson could be easily used as plans for a substitute teacher, as most of the activities are self-guided.
-
Heat, Boiling Point, History | High School
Lesson Plan: Norbert Rillieux, Thermodynamics and Chemical Engineering Mark as Favorite (15 Favorites)
In this lesson, students will learn about thermodynamics through a historical story of a budding Black chemical engineer named Norbert Rillieux. He is credited with creating the process for isolating sugar crystals from sugarcane because of his keen understanding of thermodynamics. There are a series of activities to help promote literacy in the science classroom related to the reading. This lesson could be easily used as plans for a substitute teacher, as most of the activities are self-guided. Rillieux’s story is interesting from a diversity standpoint. He was a free biracial scientist living in the South during pre-Civil War times. This story provides an opportunity to discuss diversity, equity, and inclusion in the chemistry classroom.
-
Physical Properties, Heat, Alloys | High School
Lab: Investigating Heat Treatments and Properties of Steel Mark as Favorite (18 Favorites)
In this lab, students will take on the perspective of a material scientist working for a company that makes shocks and struts for car suspension by applying three different heat treatments to steel coils. Students will test how these heat treatments affect the properties of the high carbon steel.
-
Molecular Motion, Heat, Phase Changes, Melting Point, Heating Curve, Freezing Point, Temperature, Graphing | High School, Middle School
Lesson Plan: Modeling the Melting of Ice Mark as Favorite (34 Favorites)
In this lesson, students will create a particulate model of matter that explains energy changes and transfer during a phase change.
-
Lab Safety, Physical Properties, Chemical Properties, Interdisciplinary, Heat, Temperature, Polymers, Molecular Structure | High School
Video: Ingenious Video 3: This Sandwich Will Save Your Life in an Arc Flash Mark as Favorite (3 Favorites)
It’s never fun when your clothes catch on fire. And while “stop, drop, and roll” may be a good idea sometimes, in more extreme cases, you need a better plan. Every day, industrial workers, firefighters, and soldiers risk fiery situations that might seem hard to imagine. In an arc flash event, for one, temperatures can jump to metal-melting levels in milliseconds. How can anyone possibly survive that? Well, take a tip from a club sandwich, because it’s all about the layers. The composite fabrics that protect life and limb in these situations rely on some incredible, multilayered chemistry, including the ability to quickly form a protective carbonaceous crust around the wearer.
-
Heat, Physical Properties, Physical Change, Molecular Structure, Monomer, Polymers | High School
Video: Ingenious Video 7: The World has a Receipt Problem Mark as Favorite (9 Favorites)
The receipts you take home from the store – or stuff in your bag, or lose in your car -- employ a printing method that’s been around since the 1970s. Thermal printing involves heat-sensitive inks called leuco dyes that show up when they react with an acid developer embedded in the paper. Not only do these inks fade easily, but receipts that use them aren’t recyclable, and could even be dangerous to your health. Taking a cue from a failed experiment, scientists are developing a new kind of receipt paper that will use the same thermal printers without leuco dyes. Instead of acid developers, this paper is coated in reflective microspheres that collapse under heat, allowing regular ink underneath to show through.
-
Heat, Physical Properties, Physical Change, Molecular Structure, Monomer, Polymers | High School
Activity: Ingenious: The World Has a Receipt Problem Video Questions Mark as Favorite (6 Favorites)
In this activity, students will answer questions while watching the video The World has a Receipt Problem from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the process of thermal printing on receipts, and the limitations related to the paper that currently prints using leuco dyes. This heat-sensitive ink appears when it reacts with an acid developer embedded in the paper. Scientists are working to develop a new kind of thermal receipt paper, that can use the same printers, however it offers many additional benefits and potential uses.
-
Freezing Point Depression, Heat, Phase Changes, Molecular Motion | Middle School, High School
Lab: Sweet, Salty and Cold as Ice Mark as Favorite (33 Favorites)
In this lab, students conduct a micro-scale investigation to explore how various solutes affect the freezing point of water. Because of the small volume of liquid used, results are visible within minutes. Students observe what happens to the liquids as they are cooled and use their observations to infer what is going on at the particle level. They will use the results to explain the familiar phenomena of why we salt our roads and sidewalks in the winter and why freshwater lakes and ponds freeze over more easily than saltwater oceans in the winter.
-
Lab Safety, Physical Properties, Chemical Properties, Interdisciplinary, Heat, Temperature, Polymers, Polymers | High School
Activity: Ingenious: This Sandwich Will Save Your Life in an Arc Flash Video Questions Mark as Favorite (8 Favorites)
In this activity, students will answer questions while watching the video, This Sandwich will Save your life in an Arc Flash, from the Ingenious series produced by the American Chemical Society. Each episode investigates a different topic related to how leading-edge chemistry is taking on the world’s most urgent issues to advance everyone’s quality of life and secure our shared future. This episode investigates the composite fabrics that protect lives of many people, like industrial workers, firefighters, and soldiers. When these workers encounter a fiery situation, they rely on protective clothing, designed using multiple layers of chemistry, to keep them safe.
-
Heat, Temperature, Specific Heat, Observations, Molecular Motion | High School, Middle School
Activity: What Makes Something Feel Warm Mark as Favorite (58 Favorites)
In this lesson students actively engage in thinking about energy issues in chemistry and the nature of energy (thermal) transfer. The idea that temperature is a measure of heat content will be challenged, and students will be given the opportunity to collect data that will allow them to clearly see that different materials transfer energy at different rates.
-
Heat, Specific Heat, Temperature, Experimental Design, Scientific Method, Physical Properties | High School, Middle School
Lesson Plan: Designing & Engineering a Fast Defroster Mark as Favorite (13 Favorites)
In this activity students use their understanding of energy transfer to “design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.” And “evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.” The real world problem is to help a cook who is trying to make a meal, but realizes some of the ingredients are frozen and must be thawed before he can begin.
-
Physical Change, Intermolecular Forces, Heating Curve, Phase Changes, Graphing, Heat, Exothermic & Endothermic, Temperature, Freezing Point, Melting Point | High School
Lab: Heating & Cooling Curve Mark as Favorite (48 Favorites)
In this lab, students will create a phase change graph by adding and removing heat to observe and record data during actual phase changes.
-
Calorimetry, Law of Conservation of Energy, Combustion, Heat of Combustion, Specific Heat, Heat, Exothermic & Endothermic, Bond Energy, Temperature, Measurements, Accuracy, Dimensional Analysis, Error Analysis | High School
Lab: How Much Energy is in Your Snack Food? Mark as Favorite (54 Favorites)
In this lab, students will find the amount of heat energy stored in foods and compare heat calories with food calories.
-
Chemical Change, Reaction Rate, Chemical Change, Exothermic & Endothermic, Heat, Temperature | High School
Lab: A Comparison of Two Chemical Reactions Mark as Favorite (47 Favorites)
In this lab, students will perform two chemical reactions, one between acetic acid and sodium bicarbonate and the other between the citric acid and the sodium bicarbonate in an Alka-Seltzer tablet when dissolved in water. Both reactions will produce gas while reacting in a closed plastic sandwich bag, causing it to inflate. Students will observe the reactions and analyze the results in order to understand indicators of chemical changes, heat flow, and factors that affect reaction rates
-
Heat of Combustion, Heat, Exothermic & Endothermic, Combustion | Elementary School, Middle School, High School
Video: The Internal Combustion Engine Video Mark as Favorite (29 Favorites)
This video investigates both the mechanical and the chemical processes used in the internal combustion engine, as well as the history and evolution of the combustion engine.
-
Electricity, Anode, Cathode, Galvanic Cells, Heat, Renewable Energy | Elementary School, Middle School, High School
Video: Alternative Fuels Video Mark as Favorite (9 Favorites)
This video analyzes alternatives to petroleum based fossil fuels, such as biofuels and hydrogen fuel cells.