Classroom Resources: Solutions
Filter by:
26 – 50 of 137 Classroom Resources
-
Chemical Change, Beer's Law, Redox Reaction, Reduction, Oxidation, Concentration, Reaction Rate | High School
Lesson Plan: Rustbusters! A Lab Activity on Corrosion Mark as Favorite (12 Favorites)
In this lesson students learn about factors affecting the rate of corrosion and evaluate the efficiency of different protective coatings to simulate products used in industry when building metal structures like ships or bridges.
-
Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation | High School
Activity: Simulation Activity: Galvanic/Voltaic Cells Mark as Favorite (45 Favorites)
In this activity, students will use a simulation to create a variety of galvanic/voltaic cells with different electrodes. They will record the cell potential from the voltmeter and will use their data to determine the reduction potential of each half reaction. Students will also identify anodes and cathodes, write half reaction equations and full chemical equations, and view what is happening in each half cell and the salt bridge on a molecular scale.
-
Titrations, Concentration, Acid Base Reactions, Indicators, Molarity, Interdisciplinary | High School
Lab: Calculating Acid in Lemon-Lime Soda Mark as Favorite (55 Favorites)
In this lab, students will investigate the molarity of citric acid in a clear, lemon-lime flavored soft drink through titrations with 0.10M NaOH and an indicator.
-
Beer's Law, Concentration, Physical Properties | High School
Lesson Plan: Introduction to Color Mark as Favorite (7 Favorites)
In this lesson students explore the properties related to color and how those properties vary with changes in concentration. This lesson introduces the use of a spectrophotometer to measure wavelength and absorbance in colored solutions as well as the use of Beer’s Law to determine an unknown concentration.
-
Intermolecular Forces, Mixtures, Intermolecular Forces, Colligative Properties, Freezing Point Depression, Solubility, Polarity, Phase Changes, Freezing Point, Density, Mixtures, Physical Properties | High School
Lesson Plan: Fuel Line Antifreeze Mark as Favorite (14 Favorites)
In this lesson students will explore the role of a gasoline additive, fuel line antifreeze (generally methanol or 2‑propanol), in reducing the potential of water to block fuel lines in freezing weather. Students will prepare test tube models of water-contaminated fuel tanks and explore the effect of adding different types of fuel line antifreeze. This lesson can be used to bolster concepts about miscibility, density, intermolecular forces, phase changes (freezing), and colligative properties (freezing point depression).
-
Stoichiometry, Beer's Law | High School
Lesson Plan: Aspirin Synthesis and Spectroscopy Analysis Mark as Favorite (12 Favorites)
In this lesson, students will synthesize aspirin and analyze the end product using spectroscopy by applying Beer’s Law.
-
Limiting Reactant, Percent Yield, Stoichiometry, Balancing Equations, Net Ionic Equation, Concentration, Molarity, Precipitate, Solubility, Dimensional Analysis, Mole Concept, Observations, Graphing, Separating Mixtures, Identifying an Unknown | High School
Lab: White Lab Mark as Favorite (55 Favorites)
In this lab, students use molarity concepts to review limiting reactant concepts mathematically, conceptually, and graphically. They can then carry out a follow up investigation to identify an unknown using concepts learned in the first investigation.
-
Intermolecular Forces, Solubility, Intermolecular Forces, Intramolecular Forces, Polarity, Lewis Structures, Molecular Structure, Solute & Solvent, Mixtures, Melting Point, Freezing Point, Boiling Point, Physical Properties, Graphing, Mixtures | High School
Lab: Physical Properties (High School) Mark as Favorite (29 Favorites)
In this lesson, students investigate how intermolecular forces effect physical properties by investigating substances’ melting points as well as solubility.
-
Conductivity, Covalent Bonding, Ionic Bonding | High School
Lab: Strong and Weak Electrolytes Mark as Favorite (17 Favorites)
In this lab, students will analyze the conductivity of several common household solutions using a light emitting conductivity diode tester to determine if the solution is a strong or weak electrolyte. Students will interpret the brightness of the lightbulb to determine the strength of the electrolyte. Students will also have an opportunity to consider the connection between conductivity and bond type during this lab.
-
Intermolecular Forces, Intermolecular Forces, Physical Change | High School
Demonstration: Intermolecular Forces & Physical Properties Mark as Favorite (70 Favorites)
In this demonstration, students observe and compare the properties of surface tension, beading, evaporation, and miscibility for water and acetone.
-
Beer's Law, Molarity, Concentration | High School
Lab: Beer's Law Discovered Mark as Favorite (32 Favorites)
In this laboratory investigation, students will explore the concepts of light absorption, transmittance, and the relationship between absorbance, path length, and concentration of solution.
-
Net Ionic Equation, Chemical Change, Solubility Rules, Solubility, Precipitate, Balancing Equations, Chemical Change | High School
Lab: Ions in Aqueous Solution Presentation Mark as Favorite (34 Favorites)
In this lab, students will mix ionic solutions to determine what combinations form precipitates.
-
Review, Culminating Project, Mixtures, Separating Mixtures, Beer's Law, Concentration, Redox Reaction, Half Reactions, pH, Titrations, Buffers, Indicators, Ionic Bonding, Covalent Bonding, Alloys, Percent Composition, Le Châtelier's Principle, Enthalpy, Calorimetry, Conductivity | High School
Lesson Plan: AP Chemistry Experimental Evidence Review Mark as Favorite (44 Favorites)
In this lesson, students will evaluate data from 16 simulated lab experiments that were designed to mirror the Recommended Labs from the College Board. Corresponding lab experiments and demonstration options have also been included for teacher reference.
-
Percent Composition, Identifying an Unknown, Net Ionic Equation, Stoichiometry, Error Analysis, Molar Mass | High School
Lab: Analysis of Carbonate Compounds Mark as Favorite (58 Favorites)
In this lab, students calculate the molar masses of three unknown carbonate compounds by measuring the amount of product (CO2) produced by a reaction with hydrochloric acid.
-
Titrations, Limiting Reactant, Acid Base Reactions, Indicators, Chemical Change, Equivalence Point, Stoichiometry, Balancing Equations, Chemical Change, Graphing, Error Analysis, Chemical Change, Error Analysis, Measurements, Concentration, Molarity | High School
Lab: Acid-Base Mole Ratio Mark as Favorite (15 Favorites)
In this lab, students study several concepts, including acid-base reactions, limiting reactants, and stoichiometry, by observing the contained reaction of acetic acid (diluted vinegar) with sodium hydrogen carbonate (baking soda) in an unconventional, cost effective titration.
-
Buffers, Solubility, Molecular Structure | High School
Lab: Aspirin Tablets: Are they all the Same? Mark as Favorite (55 Favorites)
In this lab, students will design an experiment to test the time and completeness of dissolution of various types of aspirin in different pH environments.
-
Ionic Bonding, Naming Compounds, Molecular Formula, Ions, Ionic Radius, Solubility, Melting Point, Physical Properties | High School
Activity: Ionic Bonding Brackets Mark as Favorite (62 Favorites)
In this lesson, students will demonstrate their knowledge of ionic bond strength and its relationship to the properties of melting point and solubility using a “brackets” activity. After analyzing the ionic charge and radius to predict the strongest and weakest bond between four pairs of ionic substances, they will then determine which will be the least soluble.
-
Chemistry Basics, Identifying an Unknown, Solubility, States of Matter, Melting Point, Phase Changes, Acids & Bases, pH, Strong vs Weak, Observations, Molecular Motion | High School
Activity: Simulation Activity: Identifying Unknowns with Safety Data Sheets Mark as Favorite (17 Favorites)
In this activity, students will use a simulation to learn about some of the sections of a safety data sheet (SDS) and how the information on SDSs can be used not only for safety purposes but also for identifying unknowns. Specifically, students will use “Section 9: Physical and Chemical Properties” to distinguish between two or three substances with similar appearances in a variety of lab-based scenarios. Particle diagrams are also included to help students visualize the substances’ behavior on a particulate level.
-
Chemistry Basics, Identifying an Unknown, Solubility, States of Matter, Melting Point, Phase Changes | High School
Simulation: Safety Data Sheets Mark as Favorite (11 Favorites)
Students learn about sections of a safety data sheet (SDS) and how the information can be used for safety purposes and for identifying unknowns. They will use the Physical and Chemical Properties section and particle diagrams to distinguish between substances with similar appearances in a variety of lab-based scenarios.
-
Mixtures | Middle School, High School
Lesson Plan: Making Sense of Milk Mark as Favorite (18 Favorites)
In this lesson, students will compare and contrast the chemical compositions of different types of plant milk and animal milk by analyzing data and developing models.
-
Acid & Base Theories, Concentration | High School
Lesson Plan: Calculating pH, A Look at Logarithms Mark as Favorite (57 Favorites)
In this lesson, students will be introduced to a base-10 logarithmic scale and use it to calculate pH from hydrogen ion concentration. Often students are able to calculate pH by pushing the correct buttons on their calculators, but they don’t understand what the values mean. This lesson attempts to bridge that gap using a guided inquiry model.
-
Solubility Rules, Classification of Reactions, Precipitate, Net Ionic Equation | High School
Lesson Plan: Do it Yourself Color! Mark as Favorite (28 Favorites)
In this lesson students will use solubility rules to predict whether the product of a double displacement or metathesis reaction will produce a precipitate. Students will then investigate a series of reactions to verify solubility rules. Finally students will determine the identity of unknown solutions based on experimental evidence.
-
Precipitate, Solubility, Solubility Rules, Predicting Products | High School
Lesson Plan: Investigating Precipitate Formation Mark as Favorite (27 Favorites)
In this lesson, students will learn about lead and the contamination of drinking water. Through collaboration, students will then consider strategies for decontaminating water, and have the opportunity to perform small-scale precipitation reactions as a method of extracting metal ions from a water sample. Finally, students can conduct research and reflect on their experience to propose a possible solution for decontaminating drinking water.
-
Concentration, Graphing, Electromagnetic Spectrum | High School
Lesson Plan: Determining the Time of Death Mark as Favorite (41 Favorites)
In this lesson, students will perform a flame test on a sample of vitreous humor (liquid found in the eyeball) in a forensic investigation. They will determine which element from the sample is used to determine the time of death. Then they will engineer a simple spectrophotometer to quantify that element. Evaluating a fake sample of vitreous humor in their spectrophotometer will help them determine the time of death for a hypothetical cadaver.
-
Colligative Properties, Specific Heat, Freezing Point Depression, Solute & Solvent, Concentration, Heat, Temperature, Calorimetry, Error Analysis | High School
Lesson Plan: The Hot and Cold of it All Mark as Favorite (13 Favorites)
In this lesson students will analyze the effectiveness of different brands of antifreeze/coolants and their ability to protect an engine in cold climates. Students will conduct a lab investigation to examine the freezing point depression in samples that have been diluted with distilled water. Students will also determine the specific heat capacities of antifreeze/coolant products as compared to pure water and explain how it relates to thermal energy transfer in the internal combustion engine.