Classroom Resources: Electrochemistry
Filter by:
1 – 25 of 39 Classroom Resources
-
Redox Reaction, Oxidation, Reduction, Half Reactions, Reaction Rate, Reaction Rate | High School
Lab: Stop The Science: Redox Regulation
In this lab, students will investigate oxidation-reduction reactions while creating a complex picture using reactions of copper solutions on aluminum foil. Students will also apply previous knowledge of reaction rate to adjust concentrations, allowing for artistic expression such as shadowing and layering in their artwork.
-
Activity Series, Redox Reaction, Half Reactions, Oxidation, Reduction, Chemical Change, Predicting Products | High School
Lab: The Corrosion of Iron
In this lab, students will investigate the process of corrosion, a redox reaction, by analyzing how iron nails react in varied environments. Students will combine their prior knowledge with research about the reactivity of metals to make predictions in advance of the lab investigation.
-
Galvanic Cells, Half Reactions, Anode, Cathode, Reduction, Oxidation, Redox Reaction, Electron Transfer, Electrons, Electricity, Spontaneous Reactions , Spontaneous vs. Non-spontaneous Reactions, Electrolytic Cells | High School
Activity: Animation Activity: Galvanic Cells
In this activity, students will use an animation to visualize how a galvanic cell works on a particulate level. Copper and zinc are the chemicals depicted in the spontaneous reaction. The transfer of electrons and involvement of the salt bridge are highlighted, in addition to the half reactions that take place for Zn (Zn -> Zn2+ + 2 e-) and Cu (2 e- + Cu2+ -> Cu).
-
Reduction, Redox Reaction, Reduction Potentials, Galvanic Cells, Oxidation, Half Reactions, Cathode, Anode, Electron Transfer, Electrons, Concentration, Molarity, Net Ionic Equation, Nernst Equation | High School
Simulation: Galvanic/Voltaic Cells 2
In this simulation, students can create a variety of standard and non-standard condition galvanic/voltaic cells. Students will choose the metal and solution for each half cell, as well as the concentration of those solutions. They can build concentration cells and other non-standard cells, record the cell potential from the voltmeter, and observe the corresponding oxidation and reduction half reactions.
-
Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Electrons, Electron Transfer, Anode, Cathode, Oxidation, Reduction, Concentration, Net Ionic Equation, Molarity, Nernst Equation | High School
Activity: Simulation Activity: Non-Standard Galvanic Cells
In this activity, students will use a simulation to create a variety of non-standard condition galvanic/voltaic cells. This simulation allows students to choose the metal and solution for each half cell, as well as the concentration of those solutions. Students will build concentration cells and other non-standard cells and record the cell potential from the voltmeter. They will compare the results of different data sets, write net ionic equations, and describe electron flow through a galvanic/voltaic cell from anode to cathode as well as the direction of migration of ions, anions towards the anode and cations towards the cathode.
-
Galvanic Cells, Redox Reaction, Reduction Potentials, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation | High School
Simulation: Galvanic/Voltaic Cells
In this simulation, students select different metals and aqueous solutions to build a galvanic/voltaic cell that generates electrical energy and observe the corresponding oxidation and reduction half reactions.
-
Galvanic Cells, Reduction Potentials, Redox Reaction, Half Reactions, Cathode, Anode, Oxidation, Reduction, Electrons, Electron Transfer, Net Ionic Equation | High School
Activity: Simulation Activity: Galvanic/Voltaic Cells
In this activity, students will use a simulation to create a variety of galvanic/voltaic cells with different electrodes. They will record the cell potential from the voltmeter and will use their data to determine the reduction potential of each half reaction. Students will also identify anodes and cathodes, write half reaction equations and full chemical equations, and view what is happening in each half cell and the salt bridge on a molecular scale.
-
Review, Culminating Project, Mixtures, Separating Mixtures, Beer's Law, Concentration, Conductivity, Redox Reaction, Half Reactions, pH, Titrations, Buffers, Indicators, Ionic Bonding, Covalent Bonding, Alloys, Percent Composition, Le Châtelier's Principle, Enthalpy, Calorimetry | High School
Lesson Plan: AP Chemistry Experimental Evidence Review
In this lesson, students will evaluate data from 16 simulated lab experiments that were designed to mirror the Recommended Labs from the College Board. Corresponding lab experiments and demonstration options have also been included for teacher reference.
-
Classification of Reactions, Redox Reaction, Activity Series, Oxidation, Reduction | High School
Lab: Investigating Oxidation-Reduction Reactions
In this lab, students will observe, classify and predict the products of single replacement, combination and decomposition reactions and provide a rationale for how reactions are classified using evidence from the lab and classroom.
-
Electricity, Anode, Cathode, Galvanic Cells, Redox Reaction, Renewable Energy | High School
Activity: Hybrid and Electric Cars Video Questions
In this activity, students will watch a video and answer related questions about the chemistry of batteries as they are used to power hybrid and electric cars. Students will learn about the basics of electricity, as well as how batteries function as a source of electricity.
-
Reduction, Oxidation, Redox Reaction, Catalysts, Activation Energy, Combustion | High School
Activity: Catalytic Converters Video Questions
In this activity, students will watch a video and answer related questions about the role of a catalytic converter and its corresponding chemical reactions within a vehicle. Students will learn about both oxidation and reduction reactions as well as the purpose of a catalyst.
-
Chemical Change, Activity Series, Redox Reaction, Chemical Change, Physical Change | High School
Demonstration: Understanding the Discrepant Reactivity of Copper in the Presence of Strong Acids
In this demonstration, students practice their observation skills during the additions of different acids to two test tubes containing copper. The activity is structured to allow students to make thoughtful remarks about what they observe, using rich indicators of both chemical and physical properties and changes. In subsequent lessons on new concepts, students can reflect back on their observations to rationalize the discrepant results of the reactions in the demonstration.
-
Exothermic & Endothermic, Redox Reaction, Oxidation, Spontaneous Reactions , Classification of Reactions, Spontaneous Reactions | High School
Demonstration: Potassium Permanganate Volcano
In this demonstration, glycerol is oxidized by using potassium permanganate as a catalyst. This gives off a tremendous amount of heat, light, and gas as a volcano of purple flames emit. It is an excellent way to introduce exothermic reactions and discuss spontaneous reactions.
-
Electrolytic Cells, Galvanic Cells, Electrolysis, Redox Reaction, Gibb's Free Energy | High School
Lesson Plan: Exploration of Electrolytic Cells
In this lesson, students will build several electrolytic cells, discuss and diagram their cells to further their understanding of electrolysis, and use qualitative and quantitative analysis of the electrolysis of potassium iodide. Finally, students will practice and be assessed on their knowledge of electrolysis on AP exam-level questioning.
-
Redox Reaction, Galvanic Cells | High School
Lesson Plan: Galvanic Cell Exploration
In this lesson, students will build their understanding of redox reactions and galvanic cells. Using both a lab activity and an animated simulation, students will investigate these types of cells (and the redox reactions that drive them) at both a macroscopic and particle level to connect how particle-level interactions can explain macroscopic observations.
-
Redox Reaction, Oxidation, Half Reactions, Oxidation Number, Titrations, Stoichiometry, Reduction | High School
Lesson Plan: Redox Reactions & Titrations
This lesson students will review oxidation states, half-reactions, balancing reactions and understand how to complete calculations and perform a redox titration.
-
Classification of Reactions, Balancing Equations, Stoichiometry, Redox Reaction, Net Ionic Equation | High School
Lab: Inquiry Redox Investigation
In this lab, students perform a simple redox reaction using an iron nail and copper(II) chloride solution. They will consider both quantitative and qualitative data collected during the reaction in order to attempt to explain what happened. Students will also create particle diagrams and determine mole ratios of various species in the reaction.
-
Solubility Rules, Chemical Change, Redox Reaction, Precipitate, Reaction Rate, Reduction, Oxidation | High School
Lesson Plan: Removing Copper Stains from Masonry
In this lab, students investigate the use of milk of magnesia poultice to remove copper stains on masonry in copper architecture. They use chalk as the model for masonry, copper(II) chloride solution as a model for soluble copper and a freshly prepared slurry of copper phosphate as a model for a hard stain of copper on masonry. Through a series of investigations students have the opportunity to connect chemistry topics with real-world applications, such as environmental hazards, engineering practices of copper architecture, corrosion control, and structural protection.
-
Electricity, Renewable Energy, Photosynthesis, Electron Transfer, Redox Reaction, Oxidation, Reduction | High School
Lesson Plan: Color Solar Power!
In this lesson students will make a dye-sensitized solar cell (also known as DSC or Gratzel cell) using extracts from blackberries, raspberries, blueberries, red cabbage, strawberries, beetroot, spinach and dried hibiscus petals. Students will measure the voltage and the current of various light sources using the created solar cells and then compare the effectiveness of each.
-
Electromagnetic Spectrum, Redox Reaction, Molecular Structure, Law of Conservation of Energy, Half Reactions, Oxidation Number, Oxidation, Reduction, Intermolecular Forces | High School
Lesson Plan: Fading Away
In this lesson students will explore photodegradation of color. First, students will view how fading of paint has affected Van Gogh’s great works of art and the efforts that are being taken to conserve these works. While exploring, students will actively engage in research to relate the fading process to redox reactions, X-Ray diffraction, solute-solvent interactions, and light/energy calculations. Students will then act as an Engineering Task Force and brainstorm to identify how photodegradation affects modern day objects and plan how to address their fading in an effort to market to the airliner Jetstar
-
Chemical Change, Beer's Law, Redox Reaction, Reduction, Oxidation, Concentration, Reaction Rate | High School
Lesson Plan: Rustbusters! A Lab Activity on Corrosion
In this lesson students learn about factors affecting the rate of corrosion and evaluate the efficiency of different protective coatings to simulate products used in industry when building metal structures like ships or bridges.
-
Activity Series, Chemical Change, Redox Reaction, Reduction, Oxidation, Balancing Equations | High School
Lesson Plan: Single Displacement Reactions with Test Tube Diagrams
In this lesson students will perform and analyze two single displacement reactions and prepare and manipulate Test Tube Diagrams to depict the activity at the molecular level. Using manipulatives representing individual ions, atoms and molecules for the various reactants and products, they will accurately represent species in the solid, gaseous and aqueous states by correlating the Test Tube Diagram to the complete ionic equation for each reaction. They will determine the reactants and products responsible for color, as well as identify which species is oxidized and which is reduced.
-
Activity Series, Chemical Change, Oxidation, Reduction, Net Ionic Equation, Redox Reaction, Observations | High School
Lab: Fine Art of Redox
In this lab, students will practice writing and balancing redox reactions and use the activity series to verify the outcome of a chemical reaction.
-
Reduction, Oxidation, Redox Reaction, Catalysts, Activation Energy, Combustion | Elementary School, Middle School, High School
Video: Catalytic Converters Video
This video investigates the role of a catalytic converter and its corresponding chemical reactions within a vehicle. Students will learn about both oxidation and reduction reactions and how they, in combination with a catalyst, can impact the molecules released in a car’s exhaust.
-
Redox Reaction, Half Reactions, Reduction, Oxidation, Cathode, Anode | High School
Activity: What Powers Your World?
In this activity, students will assess the battery power sources for electronic devices they use each day, and then relate the information to their study of oxidation-reduction reactions and electrochemistry.